Suppr超能文献

具有周期性熵垒的线性多孔介质中的扩散:由接触球体形成的管。

Diffusion in linear porous media with periodic entropy barriers: A tube formed by contacting spheres.

作者信息

Vazquez Marco-Vinicio, Berezhkovskii Alexander M, Dagdug Leonardo

机构信息

Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico, 09340 Distrito Federal, Mexico.

出版信息

J Chem Phys. 2008 Jul 28;129(4):046101. doi: 10.1063/1.2955447.

Abstract

The problem of transport in quasi-one-dimensional periodic structures has been studied recently by several groups [D. Reguera et al., Phys. Rev. Lett.96, 130603 (2006); P. S. Burada et al., Phys. Rev. E75, 051111 (2007); B. Q. Ai and L. G. Liu, ibid.74, 051114 (2006); B. Q. Ai et al., ibid.75, 061126 (2007); B. Q. Ai and L. G. Liu, J. Chem. Phys.126, 204706 (2007); 128, 024706 (2008); E. Yariv and K. D. Dorfman, Phys. Fluids19, 037101 (2007); N. Laachi et al., Europhys. Lett.80, 50009 (2007); A. M. Berezhkovskii et al., J. Chem. Phys.118, 7146 (2003); 119, 6991 (2003)]. Using the concept of "entropy barrier" [R. Zwanzig, J. Phys. Chem.96, 3926 (1992)] one can classify such structures based on the height of the entropy barrier. Structures with high barriers are formed by chambers, which are weakly connected with each other because they are connected by small apertures. To escape from such a chamber a diffusing particle has to climb a high entropy barrier to find an exit that takes a lot of time [I. V. Grigoriev et al., J. Chem. Phys.116, 9574 (2002)]. As a consequence, the particle intrachamber lifetime tau(esc) is much larger than its intrachamber equilibration time, tau(rel), tau(esc)>>tau(rel). When the aperture is not small enough, the intrachamber escape and relaxation times are of the same order and the hierarchy fails. This is the case of low entropy barriers. Transport in this case is analyzed in the works of Schmid and co-workers, Liu and co-workers, and Dorfman and co-workers, while the work of Berezhkovskii et al. is devoted to diffusion in the case of high entropy barriers.

摘要

最近,几个研究小组对准一维周期结构中的输运问题进行了研究[D. 雷古拉等人,《物理评论快报》96, 130603 (2006); P. S. 布拉达等人,《物理评论E》75, 051111 (2007); B. Q. 艾和L. G. 刘,同上74, 051114 (2006); B. Q. 艾等人,同上75, 061126 (2007); B. Q. 艾和L. G. 刘,《化学物理杂志》126, 204706 (2007); 128, 024706 (2008); E. 亚里夫和K. D. 多尔夫曼,《物理流体》19, 037101 (2007); N. 拉阿奇等人,《欧洲物理快报》80, 50009 (2007); A. M. 别列日科夫斯基等人,《化学物理杂志》118, 7146 (2003); 119, 6991 (2003)]。利用“熵垒”的概念[R. 茨万齐格,《物理化学杂志》96, 3926 (1992)],可以根据熵垒的高度对这类结构进行分类。具有高壁垒的结构由腔室构成,这些腔室相互之间连接较弱,因为它们是通过小孔连接的。为了从这样一个腔室中逸出,一个扩散粒子必须攀爬一个高熵垒才能找到出口,这需要很长时间[I. V. 格里戈里耶夫等人,《化学物理杂志》116, 9574 (2002)]。因此,粒子在腔内的寿命τ(esc)远大于其在腔内的平衡时间τ(rel),即τ(esc)>>τ(rel)。当孔径不够小时,腔内逸出时间和弛豫时间处于同一量级,这种层级关系就不成立了。这就是低熵垒的情况。施密德及其同事、刘及其同事以及多尔夫曼及其同事的工作分析了这种情况下的输运,而别列日科夫斯基等人的工作则致力于高熵垒情况下的扩散。

相似文献

3
Clusters of classical water models.
J Chem Phys. 2009 Nov 28;131(20):204310. doi: 10.1063/1.3266838.
4
Three-electron spin qubits.
J Phys Condens Matter. 2017 Oct 4;29(39):393001. doi: 10.1088/1361-648X/aa761f. Epub 2017 May 31.
5
On the density scaling of pVT data and transport properties for molecular and ionic liquids.
J Chem Phys. 2012 Jun 7;136(21):214502. doi: 10.1063/1.4720070.
7
Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
J Phys Condens Matter. 2010 Aug 25;22(33):334201. doi: 10.1088/0953-8984/22/33/334201. Epub 2010 Aug 4.
8
Rotational study of carbon monoxide isotopologues in small (4)He clusters.
Phys Chem Chem Phys. 2010 Aug 1;12(29):8260-7. doi: 10.1039/c0cp00193g. Epub 2010 Jun 1.
9
Ultraconfined oblate hard particles between hybrid penetrable walls.
Phys Rev E. 2024 Sep;110(3-1):034705. doi: 10.1103/PhysRevE.110.034705.
10
Imaging topology of Hofstadter ribbons.
New J Phys. 2019;21(5). doi: https://doi.org/10.1088/1367-2630/ab165b.

引用本文的文献

1
Enhancing carrier flux for efficient drug delivery in cancer tissues.
Biophys J. 2021 Dec 7;120(23):5255-5266. doi: 10.1016/j.bpj.2021.10.036. Epub 2021 Oct 30.
2
Computational Model for Membrane Transporters. Potential Implications for Cancer.
Front Cell Dev Biol. 2021 Feb 22;9:642665. doi: 10.3389/fcell.2021.642665. eCollection 2021.
3
Diffusion in a tube of alternating diameter.
Chem Phys. 2010 May 12;370(1-3):238-243. doi: 10.1016/j.chemphys.2010.04.012. Epub 2009 Nov 11.
5
Analytical treatment of biased diffusion in tubes with periodic dead ends.
J Chem Phys. 2011 Mar 28;134(12):124109. doi: 10.1063/1.3567187.
6
7
Biased diffusion in tubes formed by spherical compartments.
J Chem Phys. 2010 Oct 7;133(13):134102. doi: 10.1063/1.3489375.
8
Extended narrow escape problem: boundary homogenization-based analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011114. doi: 10.1103/PhysRevE.82.011114. Epub 2010 Jul 13.
9
Unbiased diffusion in tubes with corrugated walls.
J Chem Phys. 2010 Jul 21;133(3):034707. doi: 10.1063/1.3431756.

本文引用的文献

2
Corrections to the Fick-Jacobs equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 1):041203. doi: 10.1103/PhysRevE.74.041203. Epub 2006 Oct 5.
3
Extended Fick-Jacobs equation: variational approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061203. doi: 10.1103/PhysRevE.72.061203. Epub 2005 Dec 14.
4
Projection of two-dimensional diffusion in a narrow channel onto the longitudinal dimension.
J Chem Phys. 2005 May 22;122(20):204701. doi: 10.1063/1.1899150.
5
Kinetic equations for diffusion in the presence of entropic barriers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 1):061106. doi: 10.1103/PhysRevE.64.061106. Epub 2001 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验