Vazquez Marco-Vinicio, Berezhkovskii Alexander M, Dagdug Leonardo
Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico, 09340 Distrito Federal, Mexico.
J Chem Phys. 2008 Jul 28;129(4):046101. doi: 10.1063/1.2955447.
The problem of transport in quasi-one-dimensional periodic structures has been studied recently by several groups [D. Reguera et al., Phys. Rev. Lett.96, 130603 (2006); P. S. Burada et al., Phys. Rev. E75, 051111 (2007); B. Q. Ai and L. G. Liu, ibid.74, 051114 (2006); B. Q. Ai et al., ibid.75, 061126 (2007); B. Q. Ai and L. G. Liu, J. Chem. Phys.126, 204706 (2007); 128, 024706 (2008); E. Yariv and K. D. Dorfman, Phys. Fluids19, 037101 (2007); N. Laachi et al., Europhys. Lett.80, 50009 (2007); A. M. Berezhkovskii et al., J. Chem. Phys.118, 7146 (2003); 119, 6991 (2003)]. Using the concept of "entropy barrier" [R. Zwanzig, J. Phys. Chem.96, 3926 (1992)] one can classify such structures based on the height of the entropy barrier. Structures with high barriers are formed by chambers, which are weakly connected with each other because they are connected by small apertures. To escape from such a chamber a diffusing particle has to climb a high entropy barrier to find an exit that takes a lot of time [I. V. Grigoriev et al., J. Chem. Phys.116, 9574 (2002)]. As a consequence, the particle intrachamber lifetime tau(esc) is much larger than its intrachamber equilibration time, tau(rel), tau(esc)>>tau(rel). When the aperture is not small enough, the intrachamber escape and relaxation times are of the same order and the hierarchy fails. This is the case of low entropy barriers. Transport in this case is analyzed in the works of Schmid and co-workers, Liu and co-workers, and Dorfman and co-workers, while the work of Berezhkovskii et al. is devoted to diffusion in the case of high entropy barriers.
最近,几个研究小组对准一维周期结构中的输运问题进行了研究[D. 雷古拉等人,《物理评论快报》96, 130603 (2006); P. S. 布拉达等人,《物理评论E》75, 051111 (2007); B. Q. 艾和L. G. 刘,同上74, 051114 (2006); B. Q. 艾等人,同上75, 061126 (2007); B. Q. 艾和L. G. 刘,《化学物理杂志》126, 204706 (2007); 128, 024706 (2008); E. 亚里夫和K. D. 多尔夫曼,《物理流体》19, 037101 (2007); N. 拉阿奇等人,《欧洲物理快报》80, 50009 (2007); A. M. 别列日科夫斯基等人,《化学物理杂志》118, 7146 (2003); 119, 6991 (2003)]。利用“熵垒”的概念[R. 茨万齐格,《物理化学杂志》96, 3926 (1992)],可以根据熵垒的高度对这类结构进行分类。具有高壁垒的结构由腔室构成,这些腔室相互之间连接较弱,因为它们是通过小孔连接的。为了从这样一个腔室中逸出,一个扩散粒子必须攀爬一个高熵垒才能找到出口,这需要很长时间[I. V. 格里戈里耶夫等人,《化学物理杂志》116, 9574 (2002)]。因此,粒子在腔内的寿命τ(esc)远大于其在腔内的平衡时间τ(rel),即τ(esc)>>τ(rel)。当孔径不够小时,腔内逸出时间和弛豫时间处于同一量级,这种层级关系就不成立了。这就是低熵垒的情况。施密德及其同事、刘及其同事以及多尔夫曼及其同事的工作分析了这种情况下的输运,而别列日科夫斯基等人的工作则致力于高熵垒情况下的扩散。