Suppr超能文献

季节性因素对 SARS-CoV-2 大流行的潜在影响。

Potential impact of seasonal forcing on a SARS-CoV-2 pandemic.

机构信息

Biozentrum, University of Basel, Basel, Switzerland / Swiss Institute of Bioinformatics, Basel, Switzerland.

Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden / Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.

出版信息

Swiss Med Wkly. 2020 Mar 16;150:w20224. doi: 10.4414/smw.2020.20224. eCollection 2020 Mar 9.

Abstract

A novel coronavirus (SARS-CoV-2) first detected in Wuhan, China, has spread rapidly since December 2019, causing more than 100,000 confirmed infections and 4000 fatalities (as of 10 March 2020). The outbreak has been declared a pandemic by the WHO on Mar 11, 2020. Here, we explore how seasonal variation in transmissibility could modulate a SARS-CoV-2 pandemic. Data from routine diagnostics show a strong and consistent seasonal variation of the four endemic coronaviruses (229E, HKU1, NL63, OC43) and we parameterise our model for SARS-CoV-2 using these data. The model allows for many subpopulations of different size with variable parameters. Simulations of different scenarios show that plausible parameters result in a small peak in early 2020 in temperate regions of the Northern Hemisphere and a larger peak in winter 2020/2021. Variation in transmission and migration rates can result in substantial variation in prevalence between regions. While the uncertainty in parameters is large, the scenarios we explore show that transient reductions in the incidence rate might be due to a combination of seasonal variation and infection control efforts but do not necessarily mean the epidemic is contained. Seasonal forcing on SARS-CoV-2 should thus be taken into account in the further monitoring of the global transmission. The likely aggregated effect of seasonal variation, infection control measures, and transmission rate variation is a prolonged pandemic wave with lower prevalence at any given time, thereby providing a window of opportunity for better preparation of health care systems.

摘要

一种新型冠状病毒(SARS-CoV-2)于 2019 年 12 月在中国武汉首次被发现,自那时以来已迅速传播,导致超过 10 万例确诊感染和 4000 例死亡(截至 2020 年 3 月 10 日)。世界卫生组织于 2020 年 3 月 11 日宣布此次疫情为大流行。在这里,我们探讨了传染性的季节性变化如何调节 SARS-CoV-2 大流行。常规诊断数据显示,四种地方性冠状病毒(229E、HKU1、NL63 和 OC43)的传染性具有很强且一致的季节性变化,我们使用这些数据对 SARS-CoV-2 进行了模型参数化。该模型允许存在许多不同大小和参数可变的亚群。不同场景的模拟表明,合理的参数会导致 2020 年初在北半球温带地区出现一个小高峰,而在 2020/2021 年冬季出现一个更大的高峰。传播和迁移率的变化会导致不同地区之间的流行率发生很大变化。尽管参数的不确定性很大,但我们探索的情景表明,发病率的短暂下降可能是季节性变化和感染控制措施综合作用的结果,但并不一定意味着疫情得到控制。因此,在进一步监测全球传播时,应考虑到 SARS-CoV-2 的季节性影响。季节性变化、感染控制措施和传播率变化的可能综合效应是一个持续时间较长的大流行波,任何时候的流行率都较低,从而为医疗保健系统的更好准备提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验