Suppr超能文献

撒哈拉以南非洲的新冠病毒监测系统:关于持续存在和传播以指导政策的建模研究

A SARS-CoV-2 Surveillance System in Sub-Saharan Africa: Modeling Study for Persistence and Transmission to Inform Policy.

作者信息

Post Lori Ann, Argaw Salem T, Jones Cameron, Moss Charles B, Resnick Danielle, Singh Lauren Nadya, Murphy Robert Leo, Achenbach Chad J, White Janine, Issa Tariq Ziad, Boctor Michael J, Oehmke James Francis

机构信息

Buehler Center for Health Policy & Economics and Departments of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.

Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.

出版信息

J Med Internet Res. 2020 Nov 19;22(11):e24248. doi: 10.2196/24248.

Abstract

BACKGROUND

Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent's poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus's impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination.

OBJECTIVE

The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA.

METHODS

We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R.

RESULTS

Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general.

CONCLUSIONS

Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/21955.

摘要

背景

自2019年末新型冠状病毒出现以来,全球科学界和公共卫生界一直在努力更好地了解、监测、治疗和预防2019冠状病毒病(COVID-19)。在撒哈拉以南非洲(SSA),许多国家积极果断地采取了封锁措施和关闭边境的行动。这些行动可能有助于在该地区大部分地区预防大规模疫情爆发,尽管各国的病例数和死亡率存在很大差异。此外,整个撒哈拉以南非洲地区的卫生系统基础设施仍然令人担忧,封锁措施有可能增加该次大陆最贫困居民的贫困和粮食不安全状况。许多国家缺乏足够的检测、无症状感染以及糟糕的报告做法,限制了我们对病毒影响的理解,因此需要更好、更准确的监测指标,以考虑到报告不足和数据污染的情况。

目的

本研究的目标是通过用新的、可分解的COVID-19监测指标补充标准化指标,来改进传染病监测,这些指标克服了公共卫生监测系统中固有的数据限制和污染问题。除了观察到的每日和累计检测患病率、检测阳性率、发病率和死亡率外,我们还从速度、加速或减速、加速或减速变化(急动度)以及7天传播率持续性方面推导了COVID-19传播情况,这解释了COVID-19在何处传播以及传播速度有多快,并量化加速或减速率的变化,以为减轻和预防撒哈拉以南非洲地区的COVID-19及粮食不安全状况的政策提供信息。

方法

我们从公共卫生登记处提取了60天的COVID-19数据,并采用经验差分方程,根据动态面板模型,将47个撒哈拉以南国家的每日病例数作为前一周病例数、检测水平和每周变化变量的函数进行测量,该动态面板模型是在R语言中使用广义矩估计法通过实施阿雷利亚诺-邦德估计器进行估计的。

结果

肯尼亚、加纳、尼日利亚、埃塞俄比亚和南非的COVID-19病例数最多,而塞舌尔、厄立特里亚、毛里求斯、科摩罗和布隆迪的病例数最少。相比之下,速度、加速、急动度和7天持续性表明COVID-19的传播率与观察到的病例数不同。2020年9月,佛得角、纳米比亚、斯威士兰和南非的COVID-19传播速度最高,分别为每100万人口中有13.1、7.1、3.6和3例感染;津巴布韦的传播速度呈加速趋势,而赞比亚本周的减速幅度最大,即急动度最大。最后,7天持续性率表明,2020年9月15日的病例数是2020年9月8日新感染病例数的函数,南非每10万人口中的病例数从216.7降至173.2,埃塞俄比亚从136.7降至106.3。基于回归结果验证了统计方法;他们确定了感染模式的近期变化,在9月1日至8日和9月9日至15日这几周内,撒哈拉以南非洲地区疫情的演变存在很大的国家差异。这一变化代表了该周传播模型R值的下降,总体上与撒哈拉以南非洲大陆疫情的缓和一致。

结论

诸如每日观察到的新增COVID-19病例或死亡等标准监测指标对于减轻和预防COVID-19传播是必要的,但并不充分。公共卫生领导人还需要知道COVID-19传播率在何处加速或减速,这些速率在短时间内是增加还是减少,因为疫情可能迅速升级,以及今天的病例数中有多少是7天前新感染病例数的函数。尽管撒哈拉以南非洲地区是世界上一些最贫穷国家的所在地,但发展水平和人口规模不一定能预测COVID-19的传播,这意味着像美国这样的高收入国家可以向非洲国家学习如何最好地实施缓解和预防措施。

国际注册报告识别码(IRRID):RR2-10.2196/21955。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/217e/7683024/e2d250be7a47/jmir_v22i11e24248_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验