Suppr超能文献

预测焦虑障碍的病程:生物学参数的作用。

Predicting the course of anxiety disorders: The role of biological parameters.

机构信息

Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands.

Amsterdam UMC, Vrije Universiteit, Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; GGZ inGeest Specialized Mental Health Care, Amsterdam, the Netherlands.

出版信息

Prog Neuropsychopharmacol Biol Psychiatry. 2020 Jul 13;101:109924. doi: 10.1016/j.pnpbp.2020.109924. Epub 2020 Mar 13.

Abstract

OBJECTIVE

Clinical characteristics appear limited in their ability to predict course of anxiety disorders, therefore we explored the predictive value of biological parameters on course of anxiety disorders.

METHODS

907 persons with an anxiety (panic, social phobia, generalised anxiety) disorder with a baseline and two-year follow-up measure were selected from the Netherlands Study of Depression and Anxiety (NESDA). Previously, three course trajectories were distinguished which vary in terms of symptom severity and chronicity. Baseline clinical parameters like anxiety severity, anxiety duration, and disability were limited in their ability to predict the two-year course. This study explored whether metabolic syndrome, hypothalamic-pituitary-adrenal-axis functioning, inflammation markers, and neuroplasticity were indicators of two-year course and whether these parameters improved the model containing the most predictive clinical parameters only.

RESULTS

Baseline diastolic blood pressure of persons with chronic moderate symptoms was significantly higher than of persons with non-chronic mild symptoms (odds ratio [OR] = 1.18, 95% confidence interval [CI95%] 1.01 to 1.38). Baseline high-density lipid cholesterol of persons with severe chronic symptoms was significantly lower than of persons with non-chronic mild symptoms (OR = 0.77, CI95% 0.62 to 0.96). The predictive ability of both parameters was however low with concordance statistics of 0.55 and 0.57 respectively. Addition of biological parameters did not improve the predictive ability of the model containing the clinical parameters.

CONCLUSIONS

In addition to clinical characteristics, biological parameters did not improve the predictive ability of the model for course trajectory of anxiety disorders. Prediction of course trajectory in anxiety disorders remains difficult and warrants further research.

摘要

目的

临床特征在预测焦虑障碍病程方面的作用有限,因此我们探讨了生物参数对焦虑障碍病程的预测价值。

方法

从荷兰抑郁和焦虑研究(NESDA)中选择了 907 名患有焦虑症(惊恐障碍、社交恐惧症、广泛性焦虑症)的患者,他们有基线和两年随访测量数据。此前,根据症状严重程度和慢性程度,区分了三种病程轨迹。基线临床参数(如焦虑严重程度、焦虑持续时间和残疾)在预测两年病程方面的能力有限。本研究探讨了代谢综合征、下丘脑-垂体-肾上腺轴功能、炎症标志物和神经可塑性是否是两年病程的指标,以及这些参数是否改善仅包含最具预测性临床参数的模型。

结果

慢性中度症状患者的基线舒张压明显高于非慢性轻度症状患者(比值比 [OR] = 1.18,95%置信区间 [CI95%] 1.01 至 1.38)。严重慢性症状患者的基线高密度脂蛋白胆固醇明显低于非慢性轻度症状患者(OR = 0.77,CI95% 0.62 至 0.96)。然而,这两个参数的预测能力都较低,一致性统计量分别为 0.55 和 0.57。生物参数的加入并不能提高包含临床参数的模型的预测能力。

结论

除了临床特征外,生物参数并不能提高焦虑障碍病程模型的预测能力。焦虑障碍病程的预测仍然困难,需要进一步研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验