He Yuanyuan, Li Wen, Zhang Xiaoyu, Li Taotao, Ren Difeng, Lu Jun
1Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Hai-Dian District, Beijing, 100083 People's Republic of China.
2Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries, Chao-Yang District, Beijing, 100015 People's Republic of China.
J Food Sci Technol. 2020 Apr;57(4):1421-1429. doi: 10.1007/s13197-019-04177-8. Epub 2019 Nov 18.
Rose pomace, a by-product of the essential oil extraction process, is rich in dietary fiber. Insoluble dietary fiber (IDF) extracted from rose pomace was modified by enzymatic hydrolysis (EH) and ultrasound-assisted enzymatic hydrolysis (UEH) methods, and their physicochemical, functional, and microstructural properties were studied. The results showed that EH treatment performed better in the yield of soluble dietary fiber and the glucose adsorption capacity than UEH which contributed to better oil-holding, swelling, cation-exchange, and cholesterol adsorption capacities. Moreover, cellulose, hemicellulose, and lignin were detected based on Fourier transform infrared spectra and X-ray diffraction patterns. Scanning electron microscopy revealed that IDF had a shaly surface with a loose block structure after modification. In conclusion, different modification degrees have respective advantages, and modified IDF from rose pomace could be utilized in the food industry as a new source of functional ingredients, as well as to increase the economic value of rose products.
玫瑰果渣是精油提取过程中的副产品,富含膳食纤维。从玫瑰果渣中提取的不溶性膳食纤维(IDF)通过酶水解(EH)和超声辅助酶水解(UEH)方法进行改性,并对其物理化学、功能和微观结构性质进行了研究。结果表明,EH处理在可溶性膳食纤维产量和葡萄糖吸附能力方面比UEH表现更好,而UEH则有助于更好的持油、膨胀、阳离子交换和胆固醇吸附能力。此外,基于傅里叶变换红外光谱和X射线衍射图谱检测到了纤维素、半纤维素和木质素。扫描电子显微镜显示,改性后的IDF表面呈片状,具有松散的块状结构。总之,不同的改性程度各有优势,玫瑰果渣改性IDF可作为功能性成分的新来源应用于食品工业,同时提高玫瑰产品的经济价值。