Suppr超能文献

六种水果副产品中富含纤维部分的体外物理化学、植物化学和功能特性

In vitro physicochemical, phytochemical and functional properties of fiber rich fractions derived from by-products of six fruits.

作者信息

Saikia Sangeeta, Mahanta Charu Lata

机构信息

Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028 India.

出版信息

J Food Sci Technol. 2016 Mar;53(3):1496-504. doi: 10.1007/s13197-015-2120-9. Epub 2015 Dec 3.

Abstract

A comparative study was done on the health promoting and functional properties of the fibers obtained as by-products from six fruits viz., pomace of carambola (Averrhoa carambola L.) and pineapple (Ananas comosus L. Merr), peels of watermelon (Citrullus lanatus), Burmese grape (Baccurea sapida Muell. Arg) and Khasi mandarin orange (Citrus reticulata Blanco), and blossom of seeded banana (Musa balbisiana, ABB). Highest yield of fiber was obtained from Burmese grape peel (BGPL, 79.94 ± 0.41 g/100 g) and seeded banana blossom (BB 77.18 ± 0.20 g/100 g). The total dietary fiber content (TDF) was highest in fiber fraction derived from pineapple pomace (PNPM, 79.76 ± 0.42 g/100 g) and BGPL (67.27 ± 0.39 g/100 g). All the samples contained insoluble dietary fiber as the major fiber fraction. The fiber samples showed good water holding, oil holding and swelling capacities. The fiber samples exhibited antioxidant activity. All the samples showed good results for glucose adsorption, amylase activity inhibition, glucose diffusion rate and glucose diffusion reduction rate index.

摘要

对从六种水果的副产品中获得的纤维的健康促进和功能特性进行了比较研究,这六种水果分别是杨桃(阳桃)和菠萝(凤梨)的果渣、西瓜(西瓜)皮、缅甸葡萄(沙巴卡)和卡西柑桔(柑橘)皮,以及有籽香蕉(野蕉,ABB)的花。纤维产量最高的是缅甸葡萄皮(BGPL,79.94±0.41克/100克)和有籽香蕉花(BB 77.18±0.20克/100克)。膳食纤维总量(TDF)在源自菠萝果渣(PNPM,79.76±0.42克/100克)和BGPL(67.27±0.39克/100克)的纤维部分中最高。所有样品都以不溶性膳食纤维为主要纤维部分。纤维样品表现出良好的持水、持油和膨胀能力。纤维样品具有抗氧化活性。所有样品在葡萄糖吸附、淀粉酶活性抑制、葡萄糖扩散率和葡萄糖扩散降低率指数方面都表现出良好的结果。

相似文献

1
In vitro physicochemical, phytochemical and functional properties of fiber rich fractions derived from by-products of six fruits.
J Food Sci Technol. 2016 Mar;53(3):1496-504. doi: 10.1007/s13197-015-2120-9. Epub 2015 Dec 3.
4
Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace.
Food Sci Technol Int. 2014 Jan;20(1):55-62. doi: 10.1177/1082013212469619. Epub 2013 Jun 3.
5
Physicochemical, Functional and Antioxidant Properties of Tropical Fruits Co-products.
Plant Foods Hum Nutr. 2016 Jun;71(2):137-44. doi: 10.1007/s11130-016-0531-z.
10
Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace.
J Food Sci Technol. 2020 Apr;57(4):1421-1429. doi: 10.1007/s13197-019-04177-8. Epub 2019 Nov 18.

引用本文的文献

2
Beyond Insoluble Dietary Fiber: Bioactive Compounds in Plant Foods.
Nutrients. 2023 Sep 25;15(19):4138. doi: 10.3390/nu15194138.
3
The α-Amylase and α-Glucosidase Inhibition Capacity of Grape Pomace: A Review.
Food Bioproc Tech. 2023;16(4):691-703. doi: 10.1007/s11947-022-02895-0. Epub 2022 Aug 30.
4
Effect of Particle Size on Physicochemical Properties and Hypoglycemic Ability of Insoluble Dietary Fiber From Corn Bran.
Front Nutr. 2022 Jul 15;9:951821. doi: 10.3389/fnut.2022.951821. eCollection 2022.
5
Effects of γ-Irradiation on Structure and Functional Properties of Pea Fiber.
Foods. 2022 May 16;11(10):1433. doi: 10.3390/foods11101433.
7
Effect of γ-irradiation on structure, physicochemical property and bioactivity of soluble dietary fiber in navel orange peel.
Food Chem X. 2022 Feb 25;14:100274. doi: 10.1016/j.fochx.2022.100274. eCollection 2022 Jun 30.
9
Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace.
J Food Sci Technol. 2020 Apr;57(4):1421-1429. doi: 10.1007/s13197-019-04177-8. Epub 2019 Nov 18.
10
Evaluation of bioactive compounds, chemical and technological properties of fruits byproducts powder.
J Food Sci Technol. 2016 Nov;53(11):4067-4075. doi: 10.1007/s13197-016-2413-7. Epub 2016 Dec 5.

本文引用的文献

2
Dietary fibre in foods: a review.
J Food Sci Technol. 2012 Jun;49(3):255-66. doi: 10.1007/s13197-011-0365-5. Epub 2011 Apr 12.
3
Grape products and cardiovascular disease risk factors.
Nutr Res Rev. 2008 Dec;21(2):158-73. doi: 10.1017/S0954422408125124.
4
Separation and HPLC-MS identification of phenolic antioxidants from agricultural residues: almond hulls and grape pomace.
J Agric Food Chem. 2007 Dec 12;55(25):10101-9. doi: 10.1021/jf0721996. Epub 2007 Nov 16.
5
Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis.
J Pharm Biomed Anal. 2006 Aug 28;41(5):1523-42. doi: 10.1016/j.jpba.2006.04.002. Epub 2006 Jun 6.
7
Micronutrients: oxidant/antioxidant status.
Br J Nutr. 2001 May;85 Suppl 2:S67-74.
8
In vitro study of possible role of dietary fiber in lowering postprandial serum glucose.
J Agric Food Chem. 2001 Feb;49(2):1026-9. doi: 10.1021/jf000574n.
9
The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay.
Anal Biochem. 1996 Jul 15;239(1):70-6. doi: 10.1006/abio.1996.0292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验