Suppr超能文献

SVXplorer:通过不连续簇特征的连续重组进行结构变异识别的三层方法。

SVXplorer: Three-tier approach to identification of structural variants via sequential recombination of discordant cluster signatures.

机构信息

Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America.

Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America.

出版信息

PLoS Comput Biol. 2020 Mar 17;16(3):e1007737. doi: 10.1371/journal.pcbi.1007737. eCollection 2020 Mar.

Abstract

The identification of structural variants using short-read data remains challenging. Most approaches that use discordant paired-end sequences ignore non-trivial signatures presented by variants containing 3 breakpoints, such as those generated by various copy-paste and cut-paste mechanisms. This can result in lower precision and sensitivity in the identification of the more common structural variants such as deletions and duplications. We present SVXplorer, which uses a graph-based clustering approach streamlined by the integration of non-trivial signatures from discordant paired-end alignments, split-reads and read depth information to improve upon existing methods. We show that SVXplorer is more sensitive and precise compared to several existing approaches on multiple real and simulated datasets. SVXplorer is available for download at https://github.com/kunalkathuria/SVXplorer.

摘要

使用短读长数据进行结构变异体的识别仍然具有挑战性。大多数使用不一致的配对末端序列的方法忽略了由包含 3 个断点的变异体呈现的重要特征,例如由各种复制粘贴和剪切粘贴机制生成的特征。这可能导致更常见的结构变异体(如缺失和重复)的识别精度和灵敏度降低。我们提出了 SVXplorer,它使用基于图的聚类方法,通过整合不一致的配对末端比对、分裂读取和读取深度信息中的重要特征来改进现有方法。我们表明,SVXplorer 在多个真实和模拟数据集上与几种现有方法相比具有更高的敏感性和准确性。SVXplorer 可在 https://github.com/kunalkathuria/SVXplorer 上下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9004/7100977/53e6d0b55c05/pcbi.1007737.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验