Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea.
Biomolecules. 2020 Mar 8;10(3):421. doi: 10.3390/biom10030421.
c-Met is a promising target in cancer therapy for its intrinsic oncogenic properties. However, there are currently no c-Met-specific inhibitors available in the clinic. Antibodies blocking the interaction with its only known ligand, hepatocyte growth factor, and/or inducing receptor internalization have been clinically tested. To explore other therapeutic antibody mechanisms like Fc-mediated effector function, bispecific T cell engagement, and chimeric antigen T cell receptors, a diverse panel of antibodies is essential. We prepared a chicken immune scFv library, performed four rounds of bio-panning, obtained 641 clones using a high-throughput clonal retrieval system (TrueRepertoire, TR), and found 149 antigen-reactive scFv clones. We also prepared phagemid DNA before the start of bio-panning (round 0) and, after each round of bio-panning (round 1-4), performed next-generation sequencing of these five sets of phagemid DNA, and identified 860,207 HCDR3 clonotypes and 443,292 LCDR3 clonotypes along with their clonal abundance data. We then established a TR data set consisting of antigen reactivity for scFv clones found in TR analysis and the clonal abundance of their HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using the TR data set, a random forest machine learning algorithm was trained to predict the binding properties of in silico HCDR3 and LCDR3 clonotypes. Subsequently, we synthesized 40 HCDR3 and 40 LCDR3 clonotypes predicted to be antigen reactive (AR) and constructed a phage-displayed scFv library called the AR library. In parallel, we also prepared an antigen non-reactive (NR) library using 10 HCDR3 and 10 LCDR3 clonotypes predicted to be NR. After a single round of bio-panning, we screened 96 randomly-selected phage clones from the AR library and found out 14 AR scFv clones consisting of 5 HCDR3 and 11 LCDR3 AR clonotypes. We also screened 96 randomly-selected phage clones from the NR library, but did not identify any AR clones. In summary, machine learning algorithms can provide a method for identifying AR antibodies, which allows for the characterization of diverse antibody libraries inaccessible by traditional methods.
c-Met 是癌症治疗中一个有前景的靶点,因为它具有内在的致癌特性。然而,目前临床上还没有专门针对 c-Met 的抑制剂。已经有临床测试过抗体来阻断与其唯一已知配体肝细胞生长因子的相互作用,和/或诱导受体内化。为了探索其他治疗性抗体机制,如 Fc 介导的效应功能、双特异性 T 细胞结合和嵌合抗原 T 细胞受体,需要使用多样化的抗体库。我们制备了鸡免疫 scFv 文库,进行了四轮生物淘选,使用高通量克隆检索系统(TrueRepertoire,TR)获得了 641 个克隆,并发现了 149 个抗原反应性 scFv 克隆。我们还在生物淘选开始前(第 0 轮)制备了噬菌粒 DNA,并在每轮生物淘选后(第 1-4 轮)对这五组噬菌粒 DNA 进行下一代测序,鉴定了 860,207 个 HCDR3 克隆型和 443,292 个 LCDR3 克隆型及其克隆丰度数据。然后,我们建立了一个由 TR 分析中发现的 scFv 克隆的抗原反应性和它们在五组噬菌粒 DNA 中的 HCDR3 和 LCDR3 克隆型的克隆丰度数据组成的 TR 数据集。使用该 TR 数据集,我们使用随机森林机器学习算法训练来预测在硅基 HCDR3 和 LCDR3 克隆型的结合特性。随后,我们合成了 40 个预测为抗原反应性(AR)的 HCDR3 和 40 个 LCDR3 克隆型,并构建了一个称为 AR 文库的噬菌体展示 scFv 文库。同时,我们还使用预测为非反应性(NR)的 10 个 HCDR3 和 10 个 LCDR3 克隆型制备了一个 NR 文库。经过一轮生物淘选,我们从 AR 文库中筛选了 96 个随机选择的噬菌体克隆,发现了由 5 个 HCDR3 和 11 个 LCDR3 AR 克隆型组成的 14 个 AR scFv 克隆。我们还从 NR 文库中筛选了 96 个随机选择的噬菌体克隆,但没有鉴定出任何 AR 克隆。总之,机器学习算法可以提供一种识别 AR 抗体的方法,使我们能够对传统方法无法获得的多样化抗体文库进行表征。