Suppr超能文献

通过X射线计算机断层扫描对硝酸铵颗粒进行结构和形态的定量三维表征

Structural and Morphological Quantitative 3D Characterisation of Ammonium Nitrate Prills by X-Ray Computed Tomography.

作者信息

Léonard Fabien, Zhang Zhen, Krebs Holger, Bruno Giovanni

机构信息

Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, 12205 Berlin, Germany.

Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-str.24-25, 14476 Potsdam, Germany.

出版信息

Materials (Basel). 2020 Mar 9;13(5):1230. doi: 10.3390/ma13051230.

Abstract

The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.

摘要

硝酸铵(AN)颗粒与燃油(FO)的混合物,通常称为铵油炸药,在采矿业中被广泛用作散装炸药。铵油炸药混合物的主要性能预测指标之一是燃油保留率,而燃油保留率本身又受硝酸铵颗粒复杂孔隙结构的控制。在本研究中,我们展示了如何使用X射线计算机断层扫描(XCT)以及相关的先进数据处理工作流程来全面表征硝酸铵颗粒的结构和形态。我们表明,可以从XCT数据中可靠地提取不同相的体积分数等结构参数以及比表面积和形状因子等形态参数,并且这些参数与测得的燃油保留值具有良好的一致性。重要的是,燃油保留率测量(确定铵油炸药作为炸药的效率)与XCT测定的比表面积密切相关。因此,XCT可以无损使用;它可以准确评估和表征硝酸铵颗粒中的孔隙率,甚至预测其效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d88/7085102/fc72a2fa1532/materials-13-01230-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验