Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
Department of Human Sciences, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan.
Nutrients. 2020 Mar 14;12(3):770. doi: 10.3390/nu12030770.
We tested the hypothesis that oral lactate supplementation increases mitochondrial enzyme activity given the potential role of lactate for inducing mitochondrial biogenesis. In this study, mice were assigned to a saline-ingested sedentary group (S+S; = 8), a lactate-ingested sedentary group (L+S; = 9), a saline-ingested training group (S+T; = 8), and a lactate-ingested training group (L+T; = 8). Mice in the S+S and S+T groups received saline, whereas mice in the L+S and L+T groups received sodium lactate (equivalent to 5 g/kg of body weight) via oral gavage 5 days a week for 4 weeks. At 30 min after the ingestion, mice in the S+T and L+T groups performed endurance training (treadmill running, 20 m/min, 30 min, 5 days/week). At 30 min after lactate ingestion, the blood lactate level reached peak value (5.8 ± 0.4 mmol/L) in the L+S group. Immediately after the exercise, blood lactate level was significantly higher in the L+T group (9.3 ± 0.9 mmol/L) than in the S+T group (2.7 ± 0.3 mmol/L) ( < 0.01). Following a 4-week training period, a main effect of endurance training was observed in maximal citrate synthase (CS) ( < 0.01; S+T: 117 ± 3% relative to S+S, L+T: 110 ± 3%) and cytochrome c oxidase (COX) activities ( < 0.01; S+T: 126 ± 4%, L+T: 121 ± 4%) in the plantaris muscle. Similarly, there was a main effect of endurance training in maximal CS ( < 0.01; S+T: 105 ± 3%, L+T: 115 ± 2%) and COX activities ( < 0.01; S+T: 113 ± 3%, L+T: 122 ± 3%) in the soleus muscle. In addition, a main effect of oral lactate ingestion was found in maximal COX activity in the soleus ( < 0.05; L+S: 109 ± 3%, L+T: 122 ± 3%) and heart muscles ( < 0.05; L+S: 107 ± 3%, L+T: 107 ± 2.0%), but not in the plantaris muscle. Our results suggest that lactate supplementation may be beneficial for increasing mitochondrial enzyme activity in oxidative phenotype muscle.
我们测试了口服补充乳酸是否会增加线粒体酶活性的假设,因为乳酸可能对诱导线粒体生物发生有作用。在这项研究中,将小鼠分为盐水摄入的安静组(S+S;n=8)、乳酸摄入的安静组(L+S;n=9)、盐水摄入的训练组(S+T;n=8)和乳酸摄入的训练组(L+T;n=8)。S+S 和 S+T 组的小鼠接受盐水,而 L+S 和 L+T 组的小鼠通过口服灌胃接受乳酸钠(相当于 5 g/kg 体重),每周 5 天,持续 4 周。在摄入后 30 分钟,S+T 和 L+T 组的小鼠进行耐力训练(跑步机跑步,20 m/min,30 分钟,每周 5 天)。在 L+S 组,乳酸摄入后 30 分钟,血乳酸水平达到峰值(5.8±0.4mmol/L)。运动后,L+T 组的血乳酸水平显著高于 S+T 组(9.3±0.9mmol/L)(<0.01)。经过 4 周的训练期,耐力训练有明显的主要作用,在比目鱼肌的最大柠檬酸合酶(CS)(<0.01;S+T:相对 S+S 增加 117±3%,L+T:增加 110±3%)和细胞色素 c 氧化酶(COX)活性(<0.01;S+T:增加 126±4%,L+T:增加 121±4%)中。同样,在比目鱼肌的最大 CS(<0.01;S+T:增加 105±3%,L+T:增加 115±2%)和 COX 活性(<0.01;S+T:增加 113±3%,L+T:增加 122±3%)中,耐力训练也有明显的主要作用。此外,在比目鱼肌和心脏肌肉的最大 COX 活性中,口服乳酸摄入也有明显的主要作用(<0.05;L+S:增加 109±3%,L+T:增加 122±3%),但在跖肌中没有(<0.05;L+S:增加 109±3%,L+T:增加 107±3%)。我们的结果表明,乳酸补充可能有利于增加氧化表型肌肉中的线粒体酶活性。