State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China.
State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475001, China.
J Biol Chem. 2020 Apr 17;295(16):5461-5469. doi: 10.1074/jbc.RA119.012383. Epub 2020 Mar 17.
Telomeres are specific nucleoprotein structures that are located at the ends of linear eukaryotic chromosomes and play crucial roles in genomic stability. Telomere DNA consists of simple repeats of a short G-rich sequence: TTAGGG in mammals and TTTAGGG in most plants. In recent years, the mammalian telomeric G-rich repeats have been shown to form G-quadruplex (G4) structures, which are crucial for modulating telomere functions. Surprisingly, even though plant telomeres are essential for plant growth, development, and environmental adaptions, only few reports exist on plant telomeric G4 DNA (pTG4). Here, using bulk and single-molecule assays, including CD spectroscopy, and single-molecule FRET approaches, we comprehensively characterized the structure and dynamics of a typical plant telomeric sequence, d[GGG(TTTAGGG)]. We found that this sequence can fold into mixed G4s in potassium, including parallel and antiparallel structures. We also directly detected intermediate dynamic transitions, including G-hairpin, parallel G-triplex, and antiparallel G-triplex structures. Moreover, we observed that pTG4 is unfolded by the AtRecQ2 helicase but not by AtRecQ3. The results of our work shed light on our understanding about the existence, topological structures, stability, intermediates, unwinding, and functions of pTG4.
端粒是位于线性真核染色体末端的特定核蛋白结构,在基因组稳定性中起着至关重要的作用。端粒 DNA 由短的富含 G 的序列重复组成:哺乳动物中的 TTAGGG 和大多数植物中的 TTTAGGG。近年来,哺乳动物端粒富含 G 的重复序列已被证明能形成 G-四链体(G4)结构,这对于调节端粒功能至关重要。令人惊讶的是,尽管植物端粒对于植物的生长、发育和环境适应至关重要,但关于植物端粒 G4 DNA(pTG4)的报道却很少。在这里,我们使用包括 CD 光谱和单分子 FRET 方法在内的批量和单分子测定法,全面表征了典型的植物端粒序列 d[GGG(TTTAGGG)]的结构和动力学。我们发现,该序列在钾离子中可以折叠成混合 G4,包括平行和反平行结构。我们还直接检测到中间动态转变,包括 G-发夹、平行 G-三聚体和反平行 G-三聚体结构。此外,我们观察到 pTG4 被 AtRecQ2 解旋酶展开,但不被 AtRecQ3 展开。我们的工作结果阐明了我们对 pTG4 的存在、拓扑结构、稳定性、中间体、解旋和功能的理解。