Suppr超能文献

新型阿扑吗啡类似物的结构-功能-选择性关系研究以开发D1R/D2R偏向性配体

Structure-Functional-Selectivity Relationship Studies of Novel Apomorphine Analogs to Develop D1R/D2R Biased Ligands.

作者信息

Park Hyejin, Urs Aarti N, Zimmerman Joseph, Liu Chuan, Wang Qiu, Urs Nikhil M

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.

Department of Pharmacology and Therapeutics, University of Florida, Gainesville Florida 32610, United States.

出版信息

ACS Med Chem Lett. 2020 Jan 6;11(3):385-392. doi: 10.1021/acsmedchemlett.9b00575. eCollection 2020 Mar 12.

Abstract

Loss of dopamine neurons is central to the manifestation of Parkinson's disease motor symptoms. The dopamine precursor L-DOPA, the most commonly used therapeutic agent for Parkinson's disease, can restore normal movement yet cause side-effects such as dyskinesias upon prolonged administration. Dopamine D1 and D2 receptors activate G-protein- and arrestin-dependent signaling pathways that regulate various dopamine-dependent functions including locomotion. Studies have shown that shifting the balance of dopamine receptor signaling toward the arrestin pathway can be beneficial for inducing normal movement, while reducing dyskinesias. However, simultaneous activation of both D1 and D2Rs is required for robust locomotor activity. Thus, it is desirable to develop ligands targeting both D1 and D2Rs and their functional selectivity. Here, we report structure-functional-selectivity relationship (SFSR) studies of novel apomorphine analogs to identify structural motifs responsible for biased activity at both D1 and D2Rs.

摘要

多巴胺神经元的丧失是帕金森病运动症状表现的核心。多巴胺前体左旋多巴是帕金森病最常用的治疗药物,它可以恢复正常运动,但长期使用会引起诸如运动障碍等副作用。多巴胺D1和D2受体激活G蛋白和抑制蛋白依赖性信号通路,这些通路调节包括运动在内的各种多巴胺依赖性功能。研究表明,将多巴胺受体信号平衡转向抑制蛋白途径有利于诱导正常运动,同时减少运动障碍。然而,强大的运动活性需要D1和D2Rs同时激活。因此,开发同时靶向D1和D2Rs及其功能选择性的配体是很有必要的。在这里,我们报告了新型阿扑吗啡类似物的结构-功能-选择性关系(SFSR)研究,以确定在D1和D2Rs上具有偏向活性的结构基序。

相似文献

1
Structure-Functional-Selectivity Relationship Studies of Novel Apomorphine Analogs to Develop D1R/D2R Biased Ligands.
ACS Med Chem Lett. 2020 Jan 6;11(3):385-392. doi: 10.1021/acsmedchemlett.9b00575. eCollection 2020 Mar 12.
3
Targeting β-arrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson's disease.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2517-26. doi: 10.1073/pnas.1502740112. Epub 2015 Apr 27.
4
Computational insights into ligand-induced G protein and β-arrestin signaling of the dopamine D1 receptor.
J Comput Aided Mol Des. 2023 Jun;37(5-6):227-244. doi: 10.1007/s10822-023-00503-7. Epub 2023 Apr 15.
5
Engineered D2R Variants Reveal the Balanced and Biased Contributions of G-Protein and β-Arrestin to Dopamine-Dependent Functions.
Neuropsychopharmacology. 2018 Apr;43(5):1164-1173. doi: 10.1038/npp.2017.254. Epub 2017 Oct 25.
6
Dopamine heteroreceptor complexes as therapeutic targets in Parkinson's disease.
Expert Opin Ther Targets. 2015 Mar;19(3):377-98. doi: 10.1517/14728222.2014.981529. Epub 2014 Dec 8.
7
Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor.
ACS Chem Neurosci. 2015 Apr 15;6(4):681-92. doi: 10.1021/acschemneuro.5b00020. Epub 2015 Feb 20.
8
Novel and Potent Dopamine D Receptor Go-Protein Biased Agonists.
ACS Pharmacol Transl Sci. 2019 Feb 8;2(1):52-65. doi: 10.1021/acsptsci.8b00060. Epub 2019 Jan 14.
9
L-DOPA treatment selectively restores spine density in dopamine receptor D2-expressing projection neurons in dyskinetic mice.
Biol Psychiatry. 2014 May 1;75(9):711-22. doi: 10.1016/j.biopsych.2013.05.006. Epub 2013 Jun 13.

引用本文的文献

2
Perry Disease: Current Outlook and Advances in Drug Discovery Approach to Symptomatic Treatment.
Int J Mol Sci. 2024 Oct 3;25(19):10652. doi: 10.3390/ijms251910652.
3
Natural Product-Inspired Dopamine Receptor Ligands.
J Med Chem. 2024 Aug 8;67(15):12463-12484. doi: 10.1021/acs.jmedchem.4c00537. Epub 2024 Jul 22.
4
Computational insights into ligand-induced G protein and β-arrestin signaling of the dopamine D1 receptor.
J Comput Aided Mol Des. 2023 Jun;37(5-6):227-244. doi: 10.1007/s10822-023-00503-7. Epub 2023 Apr 15.
5
Targeting β-Arrestins in the Treatment of Psychiatric and Neurological Disorders.
CNS Drugs. 2021 Mar;35(3):253-264. doi: 10.1007/s40263-021-00796-y. Epub 2021 Mar 2.

本文引用的文献

1
Designing Functionally Selective Noncatechol Dopamine D Receptor Agonists with Potent In Vivo Antiparkinsonian Activity.
ACS Chem Neurosci. 2019 Sep 18;10(9):4160-4182. doi: 10.1021/acschemneuro.9b00410. Epub 2019 Aug 20.
2
Defining Structure-Functional Selectivity Relationships (SFSR) for a Class of Non-Catechol Dopamine D Receptor Agonists.
J Med Chem. 2019 Apr 11;62(7):3753-3772. doi: 10.1021/acs.jmedchem.9b00351. Epub 2019 Mar 27.
4
Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs.
Nat Chem Biol. 2018 Feb;14(2):126-134. doi: 10.1038/nchembio.2527. Epub 2017 Dec 11.
5
G Protein-coupled Receptor Biased Agonism.
J Cardiovasc Pharmacol. 2016 Mar;67(3):193-202. doi: 10.1097/FJC.0000000000000356.
6
Targeting β-arrestin2 in the treatment of L-DOPA-induced dyskinesia in Parkinson's disease.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2517-26. doi: 10.1073/pnas.1502740112. Epub 2015 Apr 27.
7
Identification of G protein-biased agonists that fail to recruit β-arrestin or promote internalization of the D1 dopamine receptor.
ACS Chem Neurosci. 2015 Apr 15;6(4):681-92. doi: 10.1021/acschemneuro.5b00020. Epub 2015 Feb 20.
8
Lipophilic prodrugs of apomorphine I: preparation, characterisation, and in vitro enzymatic hydrolysis in biorelevant media.
Eur J Pharm Biopharm. 2015 Jan;89:216-23. doi: 10.1016/j.ejpb.2014.12.014. Epub 2014 Dec 13.
9
Signalling bias in new drug discovery: detection, quantification and therapeutic impact.
Nat Rev Drug Discov. 2013 Mar;12(3):205-16. doi: 10.1038/nrd3954. Epub 2012 Feb 15.
10
The pharmacology of L-DOPA-induced dyskinesia in Parkinson's disease.
Pharmacol Rev. 2013 Jan 10;65(1):171-222. doi: 10.1124/pr.111.005678. Print 2013 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验