NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands.
Department of Nutrition and Movement Sciences, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
Diabetologia. 2020 Jun;63(6):1211-1222. doi: 10.1007/s00125-020-05128-1. Epub 2020 Mar 17.
AIMS/HYPOTHESIS: Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown.
Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control.
In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to CO was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg.
CONCLUSIONS/INTERPRETATION: Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans.
ClinicalTrial.gov NCT01576250.
PS was supported by a 'VICI' Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).
目的/假设:体力活动不足、线粒体功能降低、肌内脂质(IMCL)沉积增加和胰岛素敏感性降低是肥胖和 2 型糖尿病等慢性代谢紊乱的共同特征。然而,线粒体功能降低是否会导致人类胰岛素抵抗仍不清楚。
在一项干预研究中,我们研究了单腿体力不活动引起的肌肉线粒体氧化能力降低是否会导致更强的脂质诱导胰岛素抵抗迹象。为此,10 名男性参与者(年龄 22.4±4.2 岁,BMI 21.3±2.0kg/m)接受了 12 天的单侧下肢悬吊,对侧腿作为主动内部对照。
在体内,通过磷酸肌酸(PCr)恢复半衰期评估,非活动腿的线粒体氧化能力较低。在体外,棕榈酸氧化为 CO 的速率在悬吊腿中低于主动腿;然而,这并没有导致三酰甘油中 [C]棕榈酸的掺入明显增加。然而,在悬吊腿中,线粒体功能降低与胫骨前肌和股外侧肌中 IMCL 含量的增加以及膜结合蛋白激酶 C(PKC)θ的增加平行。最后,在脂质输注时,胰岛素信号在悬吊腿中低于主动腿。
结论/解释:这些结果共同表明,在独特的人体体内模型中,由于体力活动不足导致的低线粒体氧化能力直接影响 IMCL 积累和 PKCθ易位,导致脂质输注后胰岛素信号受损。这证明了线粒体氧化能力和肌肉脂肪积累在人类胰岛素抵抗发展中的重要性。
ClinicalTrials.gov NCT01576250。
PS 得到了荷兰科学研究组织(荷兰语:Nederlandse Organisatie voor Wetenschappelijk Onderzoek)的“VICI”创新研究资助(资助号 918.96.618)的支持。