Suppr超能文献

高通量分析 Cas9 变体特异性。

Highly Parallel Profiling of Cas9 Variant Specificity.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.

出版信息

Mol Cell. 2020 May 21;78(4):794-800.e8. doi: 10.1016/j.molcel.2020.02.023. Epub 2020 Mar 17.

Abstract

Determining the off-target cleavage profile of programmable nucleases is an important consideration for any genome editing experiment, and a number of Cas9 variants have been reported that improve specificity. We describe here tagmentation-based tag integration site sequencing (TTISS), an efficient, scalable method for analyzing double-strand breaks (DSBs) that we apply in parallel to eight Cas9 variants across 59 targets. Additionally, we generated thousands of other Cas9 variants and screened for variants with enhanced specificity and activity, identifying LZ3 Cas9, a high specificity variant with a unique +1 insertion profile. This comprehensive comparison reveals a general trade-off between Cas9 activity and specificity and provides information about the frequency of generation of +1 insertions, which has implications for correcting frameshift mutations.

摘要

确定可编程核酸酶的脱靶切割谱是任何基因组编辑实验的一个重要考虑因素,已经报道了许多可以提高特异性的 Cas9 变体。我们在这里描述了基于标签化的标签整合位点测序(TTISS),这是一种高效、可扩展的分析双链断裂(DSB)的方法,我们将其应用于 59 个靶标中的 8 种 Cas9 变体。此外,我们还生成了数千种其他 Cas9 变体,并筛选出具有增强特异性和活性的变体,确定了 LZ3 Cas9,这是一种具有独特+1 插入谱的高特异性变体。这项全面的比较揭示了 Cas9 活性和特异性之间的一般权衡,并提供了有关+1 插入产生频率的信息,这对纠正移码突变具有影响。

相似文献

1
Highly Parallel Profiling of Cas9 Variant Specificity.
Mol Cell. 2020 May 21;78(4):794-800.e8. doi: 10.1016/j.molcel.2020.02.023. Epub 2020 Mar 17.
2
Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
Mol Cell. 2018 Aug 16;71(4):498-509.e4. doi: 10.1016/j.molcel.2018.06.021. Epub 2018 Jul 19.
3
Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing.
Mol Ther. 2021 Mar 3;29(3):1057-1069. doi: 10.1016/j.ymthe.2020.10.006. Epub 2020 Oct 14.
4
CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations.
Nat Commun. 2019 Mar 8;10(1):1136. doi: 10.1038/s41467-019-09006-2.
8
In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems.
Methods Mol Biol. 2021;2162:215-232. doi: 10.1007/978-1-0716-0687-2_12.
10
A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
Nat Commun. 2020 Nov 2;11(1):5512. doi: 10.1038/s41467-020-19344-1.

引用本文的文献

2
Applications of multiplexed CRISPR-Cas for genome engineering.
Exp Mol Med. 2025 Jul;57(7):1373-1380. doi: 10.1038/s12276-025-01500-6. Epub 2025 Jul 31.
3
Design of highly functional genome editors by modelling CRISPR-Cas sequences.
Nature. 2025 Jul 30. doi: 10.1038/s41586-025-09298-z.
7
Application of CRISPR/Cas gene editing for infectious disease control in poultry.
Open Life Sci. 2025 May 20;20(1):20251095. doi: 10.1515/biol-2025-1095. eCollection 2025.
8
Predicting adenine base editing efficiencies in different cellular contexts by deep learning.
Genome Biol. 2025 May 8;26(1):115. doi: 10.1186/s13059-025-03586-7.
9
Evolution-guided protein design of IscB for persistent epigenome editing in vivo.
Nat Biotechnol. 2025 May 7. doi: 10.1038/s41587-025-02655-3.
10
Nickase fidelity drives EvolvR-mediated diversification in mammalian cells.
Nat Commun. 2025 Apr 19;16(1):3723. doi: 10.1038/s41467-025-58414-0.

本文引用的文献

1
Search-and-replace genome editing without double-strand breaks or donor DNA.
Nature. 2019 Dec;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub 2019 Oct 21.
2
RNA-guided DNA insertion with CRISPR-associated transposases.
Science. 2019 Jul 5;365(6448):48-53. doi: 10.1126/science.aax9181. Epub 2019 Jun 6.
4
Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq.
Science. 2019 Apr 19;364(6437):286-289. doi: 10.1126/science.aav9023. Epub 2019 Apr 18.
5
Engineering of CRISPR-Cas12b for human genome editing.
Nat Commun. 2019 Jan 22;10(1):212. doi: 10.1038/s41467-018-08224-4.
7
Predictable and precise template-free CRISPR editing of pathogenic variants.
Nature. 2018 Nov;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub 2018 Nov 7.
9
Directed evolution of CRISPR-Cas9 to increase its specificity.
Nat Commun. 2018 Aug 6;9(1):3048. doi: 10.1038/s41467-018-05477-x.
10
Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs.
Nat Biomed Eng. 2018 Jan;2(1):38-47. doi: 10.1038/s41551-017-0178-6. Epub 2018 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验