Suppr超能文献

用于CRISPR引导RNA端到端设计的脱靶活性预测

Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs.

作者信息

Listgarten Jennifer, Weinstein Michael, Kleinstiver Benjamin P, Sousa Alexander A, Joung J Keith, Crawford Jake, Gao Kevin, Hoang Luong, Elibol Melih, Doench John G, Fusi Nicolo

机构信息

Microsoft Research, Cambridge, MA, USA.

Molecular, Cell, and Developmental Biology, and Quantitative and Computational Biosciences Institute, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

Nat Biomed Eng. 2018 Jan;2(1):38-47. doi: 10.1038/s41551-017-0178-6. Epub 2018 Jan 10.

Abstract

The CRISPR-Cas9 system provides unprecedented genome editing capabilities. However, off-target effects lead to sub-optimal usage and additionally are a bottleneck in the development of therapeutic uses. Herein, we introduce the first machine learning-based approach to off-target prediction, yielding a state-of-the-art model for CRISPR-Cas9 that outperforms all other guide design services. Our approach, Elevation, consists of two interdependent machine learning models-one for scoring individual guide-target pairs, and another which aggregates these guide-target scores into a single, overall summary guide score. Through systematic investigation, we demonstrate that Elevation performs substantially better than competing approaches on both tasks. Additionally, we are the first to systematically evaluate approaches on the guide summary score problem; we show that the most widely-used method performs no better than random at times, whereas Elevation consistently outperformed it, sometimes by an order of magnitude. We also introduce an evaluation method that balances errors between active and inactive guides, thereby encapsulating a range of practical use cases; Elevation is consistently superior to other methods across the entire range. Finally, because of the large scale and computational demands of off-target prediction, we have developed a cloud-based service for quick retrieval. This service provides end-to-end guide design by also incorporating our previously reported on-target model, Azimuth. (https://crispr.ml:please treat this web site as confidential until publication).

摘要

CRISPR-Cas9系统提供了前所未有的基因组编辑能力。然而,脱靶效应导致其使用效果欠佳,此外也是治疗用途开发中的一个瓶颈。在此,我们引入了第一种基于机器学习的脱靶预测方法,得到了一个用于CRISPR-Cas9的先进模型,其性能优于所有其他引导设计服务。我们的方法Elevation由两个相互依赖的机器学习模型组成——一个用于对单个引导序列-靶点对进行评分,另一个将这些引导序列-靶点评分汇总为一个单一的总体引导序列总结评分。通过系统研究,我们证明Elevation在这两项任务上的表现都明显优于其他竞争方法。此外,我们是第一个系统评估引导序列总结评分问题方法的;我们表明,最广泛使用的方法有时表现并不比随机选择好,而Elevation始终优于它,有时领先一个数量级。我们还引入了一种评估方法,该方法平衡了活性和非活性引导序列之间的误差,从而涵盖了一系列实际应用案例;在整个范围内,Elevation始终优于其他方法。最后,由于脱靶预测的规模大且计算要求高,我们开发了一种基于云的服务以实现快速检索。该服务还结合了我们之前报道的靶向模型Azimuth,提供端到端的引导序列设计。(https://crispr.ml:在发表之前,请将此网站视为机密)

相似文献

4
Computational approaches for effective CRISPR guide RNA design and evaluation.用于有效CRISPR引导RNA设计与评估的计算方法。
Comput Struct Biotechnol J. 2019 Nov 29;18:35-44. doi: 10.1016/j.csbj.2019.11.006. eCollection 2020.
6
CGD: Comprehensive guide designer for CRISPR-Cas systems.CGD:CRISPR-Cas系统的综合指南设计工具
Comput Struct Biotechnol J. 2020 Mar 25;18:814-820. doi: 10.1016/j.csbj.2020.03.020. eCollection 2020.
9
Recent Advances in Genome Editing Using CRISPR/Cas9.使用CRISPR/Cas9进行基因组编辑的最新进展
Front Plant Sci. 2016 May 24;7:703. doi: 10.3389/fpls.2016.00703. eCollection 2016.

引用本文的文献

4
Revolutionizing CRISPR technology with artificial intelligence.利用人工智能革新CRISPR技术。
Exp Mol Med. 2025 Jul;57(7):1419-1431. doi: 10.1038/s12276-025-01462-9. Epub 2025 Jul 31.
5
Off-target interactions in the CRISPR-Cas9 Machinery: mechanisms and outcomes.CRISPR-Cas9机制中的脱靶相互作用:机制与结果
Biochem Biophys Rep. 2025 Jul 5;43:102134. doi: 10.1016/j.bbrep.2025.102134. eCollection 2025 Sep.
7
Review on Advancement of AI in Synthetic Biology.人工智能在合成生物学中的进展综述。
Methods Mol Biol. 2025;2952:483-490. doi: 10.1007/978-1-0716-4690-8_26.
8
From Code to Life: The AI-Driven Revolution in Genome Editing.从代码到生命:基因组编辑中的人工智能驱动革命
Adv Sci (Weinh). 2025 Aug;12(30):e17029. doi: 10.1002/advs.202417029. Epub 2025 Jun 19.
9
Role of artificial intelligence in revolutionizing drug discovery.人工智能在变革药物研发中的作用。
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.

本文引用的文献

3
Mapping the genomic landscape of CRISPR-Cas9 cleavage.绘制 CRISPR-Cas9 切割的基因组图谱。
Nat Methods. 2017 Jun;14(6):600-606. doi: 10.1038/nmeth.4284. Epub 2017 May 1.
6
CRISPR-DO for genome-wide CRISPR design and optimization.用于全基因组CRISPR设计与优化的CRISPR-DO
Bioinformatics. 2016 Nov 1;32(21):3336-3338. doi: 10.1093/bioinformatics/btw476. Epub 2016 Jul 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验