Suppr超能文献

流感血凝素通过两个连续的跨膜机制驱动病毒进入。

Influenza hemagglutinin drives viral entry via two sequential intramembrane mechanisms.

机构信息

Department of Cell and Molecular Biology, Uppsala University, 752 36 Uppsala, Sweden.

Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7200-7207. doi: 10.1073/pnas.1914188117. Epub 2020 Mar 18.

Abstract

Enveloped viruses enter cells via a process of membrane fusion between the viral envelope and a cellular membrane. For influenza virus, mutational data have shown that the membrane-inserted portions of the hemagglutinin protein play a critical role in achieving fusion. In contrast to the relatively well-understood ectodomain, a predictive mechanistic understanding of the intramembrane mechanisms by which influenza hemagglutinin drives fusion has been elusive. We used molecular dynamics simulations of fusion between a full-length hemagglutinin proteoliposome and a lipid bilayer to analyze these mechanisms. In our simulations, hemagglutinin first acts within the membrane to increase lipid tail protrusion and promote stalk formation and then acts to engage the distal leaflets of each membrane and promote stalk widening, curvature, and eventual fusion. These two sequential mechanisms, one occurring before stalk formation and one after, are consistent with our experimental measurements of single-virus fusion kinetics to liposomes of different sizes. The resulting model also helps explain and integrate previous mutational and biophysical data, particularly the mutational sensitivity of the fusion peptide N terminus and the length sensitivity of the transmembrane domain. We hypothesize that entry by other enveloped viruses may also use sequential processes of acyl tail exposure, followed by membrane curvature and distal leaflet engagement.

摘要

包膜病毒通过病毒包膜与细胞膜之间的膜融合过程进入细胞。对于流感病毒,突变数据表明,血凝素蛋白的膜插入部分在实现融合中起着关键作用。与相对了解较多的细胞外结构域相比,流感血凝素驱动融合的跨膜机制的预测性机械理解仍然难以捉摸。我们使用全长血凝素蛋白脂囊泡与脂质双层之间融合的分子动力学模拟来分析这些机制。在我们的模拟中,血凝素首先在膜内作用以增加脂质尾部突出并促进柄形成,然后作用于每个膜的远端小叶并促进柄的变宽、弯曲和最终融合。这两个连续的机制,一个发生在柄形成之前,一个发生在之后,与我们对不同大小脂质体的单病毒融合动力学的实验测量结果一致。所得到的模型还有助于解释和整合以前的突变和生物物理数据,特别是融合肽 N 端的突变敏感性和跨膜结构域的长度敏感性。我们假设其他包膜病毒的进入也可能使用酰基尾部暴露、随后的膜曲率和远端小叶结合的顺序过程。

相似文献

1
Influenza hemagglutinin drives viral entry via two sequential intramembrane mechanisms.流感血凝素通过两个连续的跨膜机制驱动病毒进入。
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7200-7207. doi: 10.1073/pnas.1914188117. Epub 2020 Mar 18.
2
Mechanisms of influenza viral membrane fusion.流感病毒膜融合机制。
Semin Cell Dev Biol. 2016 Dec;60:78-88. doi: 10.1016/j.semcdb.2016.07.007. Epub 2016 Jul 9.

引用本文的文献

2
Why are so many fusogens rod-shaped?为什么这么多融合蛋白呈杆状?
bioRxiv. 2025 Jul 3:2025.06.30.662463. doi: 10.1101/2025.06.30.662463.
10
Making the cut: Multiscale simulation of membrane remodeling.切变:膜重塑的多尺度模拟。
Curr Opin Struct Biol. 2024 Aug;87:102831. doi: 10.1016/j.sbi.2024.102831. Epub 2024 May 12.

本文引用的文献

9
Improved Parameters for the Martini Coarse-Grained Protein Force Field.用于马提尼粗粒度蛋白质力场的改进参数
J Chem Theory Comput. 2013 Jan 8;9(1):687-97. doi: 10.1021/ct300646g. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验