Blijleven Jelle S, Boonstra Sander, Onck Patrick R, van der Giessen Erik, van Oijen Antoine M
Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
School of Chemistry, Faculty of Science, Medicine and Health, University of Wollongong, NSW 2522, Australia.
Semin Cell Dev Biol. 2016 Dec;60:78-88. doi: 10.1016/j.semcdb.2016.07.007. Epub 2016 Jul 9.
Influenza viral particles are enveloped by a lipid bilayer. A major step in infection is fusion of the viral and host cellular membranes, a process with large kinetic barriers. Influenza membrane fusion is catalyzed by hemagglutinin (HA), a class I viral fusion protein activated by low pH. The exact nature of the HA conformational changes that deliver the energy required for fusion remains poorly understood. This review summarizes our current knowledge of HA structure and dynamics, describes recent single-particle experiments and modeling studies, and discusses their role in understanding how multiple HAs mediate fusion. These approaches provide a mechanistic picture in which HAs independently and stochastically insert into the target membrane, forming a cluster of HAs that is collectively able to overcome the barrier to membrane fusion. The new experimental and modeling approaches described in this review hold promise for a more complete understanding of other viral fusion systems and the protein systems responsible for cellular fusion.
流感病毒颗粒被脂质双分子层包裹。感染过程中的一个主要步骤是病毒膜与宿主细胞膜的融合,这一过程存在较大的动力学障碍。流感病毒膜融合由血凝素(HA)催化,HA是一种在低pH值下被激活的I类病毒融合蛋白。目前对于提供融合所需能量的HA构象变化的确切性质仍知之甚少。本综述总结了我们目前对HA结构和动力学的认识,描述了最近的单颗粒实验和建模研究,并讨论了它们在理解多个HA如何介导融合方面的作用。这些方法提供了一种机制图景,即HA独立且随机地插入靶膜,形成一个HA簇,该簇共同能够克服膜融合的障碍。本综述中描述的新实验和建模方法有望更全面地理解其他病毒融合系统以及负责细胞融合的蛋白质系统。