CNRS Centre de Biophysique Moléculaire UPR 4301, Rue Charles Sadron, CS80054, 45071, Orléans, France.
Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Via Zamboni 67, I-40126, Bologna, Italy.
Sci Rep. 2020 Mar 18;10(1):4965. doi: 10.1038/s41598-020-61774-w.
Modern biological dependency on trace elements is proposed to be a consequence of their enrichment in the habitats of early life together with Earth's evolving physicochemical conditions; the resulting metallic biological complement is termed the metallome. Herein, we detail a protocol for describing metallomes in deep time, with applications to the earliest fossil record. Our approach extends the metallome record by more than 3 Ga and provides a novel, non-destructive method of estimating biogenicity in the absence of cellular preservation. Using microbeam particle-induced X-ray emission (µPIXE), we spatially quantify transition metals and metalloids within organic material from 3.33 billion-year-old cherts of the Barberton greenstone belt, and demonstrate that elements key to anaerobic prokaryotic molecular nanomachines, including Fe, V, Ni, As and Co, are enriched within carbonaceous material. Moreover, Mo and Zn, likely incorporated into enzymes only after the Great Oxygenation Event, are either absent or present at concentrations below the limit of detection of µPIXE, suggesting minor biological utilisation in this environmental setting. Scanning and transmission electron microscopy demonstrates that metal enrichments do not arise from accumulation in nanomineral phases and thus unambiguously reflect the primary composition of the carbonaceous material. This carbonaceous material also has δC between -41.3‰ and 0.03‰, dominantly -21.0‰ to -11.5‰, consistent with biological fractionation and mostly within a restricted range inconsistent with abiotic processes. Considering spatially quantified trace metal enrichments and negative δC fractionations together, we propose that, although lacking cellular preservation, this organic material has biological origins and, moreover, that its precursor metabolism may be estimated from the fossilised "palaeo-metallome". Enriched Fe, V, Ni and Co, together with petrographic context, suggests that this kerogen reflects the remnants of a lithotrophic or organotrophic consortium cycling methane or nitrogen. Palaeo-metallome compositions could be used to deduce the metabolic networks of Earth's earliest ecosystems and, potentially, as a biosignature for evaluating the origin of preserved organic materials found on Mars.
现代生物学对微量元素的依赖被认为是它们在早期生命栖息地中富集以及地球不断变化的物理化学条件的结果;由此产生的金属生物补充物被称为金属组。本文详细介绍了一种描述深时金属组的方法,并将其应用于最早的化石记录。我们的方法将金属组记录延长了 30 多亿年,并提供了一种新颖的、非破坏性的方法,用于在没有细胞保存的情况下估计生物起源。使用微束颗粒诱导 X 射线发射(µPIXE),我们对来自 33 亿年前巴伯顿绿岩带燧石的有机物质中的过渡金属和类金属进行了空间定量,并证明了对厌氧原核分子机器至关重要的元素,包括 Fe、V、Ni、As 和 Co,在含碳物质中富集。此外,Mo 和 Zn 可能在大氧化事件之后才被整合到酶中,要么不存在,要么低于 µPIXE 的检测限,这表明在这种环境中生物利用度较低。扫描和透射电子显微镜表明,金属富集不是由于纳米矿物相的积累而产生的,因此明确反映了含碳物质的主要成分。这种含碳物质的 δC 值介于-41.3‰至 0.03‰之间,主要为-21.0‰至-11.5‰,与生物分馏一致,且主要集中在一个与非生物过程不一致的有限范围内。综合考虑空间定量的痕量金属富集和负的 δC 分馏,我们提出,尽管缺乏细胞保存,但这种有机物质具有生物起源,而且,其前体代谢可以从化石化的“古金属组”中估计出来。富集的 Fe、V、Ni 和 Co 以及岩石学背景表明,这种干酪根反映了一个以甲烷或氮为基础的自养或有机营养联合体的残余物。古金属组的组成可以用来推断地球最早生态系统的代谢网络,并可能作为评估火星上保存的有机物质起源的生物特征。