Suppr超能文献

地质和地球化学对生命起源和演化的制约。

Geological and Geochemical Constraints on the Origin and Evolution of Life.

机构信息

Department of Geophysics, Stanford University , Stanford, California.

出版信息

Astrobiology. 2018 Sep;18(9):1199-1219. doi: 10.1089/ast.2017.1778. Epub 2018 Aug 20.

Abstract

The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.

摘要

传统的分子生物学生命之树以最后共同祖先 (LUCA) 分支为细菌和古菌(尽管模糊),这足以作为讨论早期地球地质过程的基础。生物学家推断出树内节点生物的可能特性,以及它们所居住的环境。地质学家根据地质和生态合理性来检验脆弱的生命之树和生命起源假说,反之,他们也从树中推断出地质信息。后一种方法很有价值,因为地质学家对地球何时变得宜居以及生命实际存在的时间只有很弱的限制,这个时间间隔很长,在 45 亿到 38.5 亿年前之间,没有完整的地表岩石。关于检验,分子生物学的起源和早期进化假说最近集中在海洋蛇纹石化环境和暴露于紫外线阳光的替代陆地环境中。这些小生境在冥古宙地球上的存在几乎是肯定的。关于从基因组学推断地质环境,生命之树上的节点可能源于海洋蛇纹石化起源情景和小行星撞击所暗示的真正瓶颈。通过阈值创新一种非常有用的特征,可以使成功的生物体迅速变得非常丰富,然后使一个大的分支扎根。生命本身的起源,即最初的达尔文祖先,细菌和古菌的根是自由生活的细胞生物,它们独立地从海洋蛇纹石化上方的热液烟囱或陆地浅层孔隙水中逃脱,厌氧光合作用的 Selabacteria 根,以及殖民陆地的 Terrabacteria 根,都是在地质记录之前出现的有吸引力的例子。相反,地质推理提出了可能的事件供生物学家评估。小行星撞击可能通过消灭生命而产生瓶颈。细菌和古菌的嗜热根以及嗜热 LUCA 都是很有吸引力的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验