Suppr超能文献

在南非 Barberton 绿岩带 32 亿年 Mendon 组黄铁矿中进行的原位 Fe 和 S 同位素分析:早期微生物铁还原的证据。

In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): Evidence for early microbial iron reduction.

机构信息

Univ Lyon, UJM Saint Etienne, UCA, CNRS, IRD, UMR 6524, Laboratoire Magma et Volcans, Saint Etienne, France.

Institut des Sciences de la Terre, Université de Lausanne, Lausanne, Switzerland.

出版信息

Geobiology. 2020 May;18(3):306-325. doi: 10.1111/gbi.12385. Epub 2020 Mar 2.

Abstract

On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7-2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28- to 3.26-Gyr-old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ Fe values of -1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass-independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ S values > +3‰, while the other groups display more variable and closer to 0‰ Δ S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass-independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro-organisms closely related to the last common ancestor had the ability to reduce Fe(III).

摘要

基于系统发育研究和实验室培养,有人提出微生物代谢铁的能力在古菌/细菌分裂之前就已经出现。然而,在 27 亿至 25 亿年前的岩石中,没有提出任何明确的支持这一说法的地球化学数据。在本工作中,我们报道了南非上门登组 3.28 至 3.26 亿年燧石中黄铁矿的原位 Fe 和 S 同位素组成。我们鉴定出三种微观黄铁矿,其 Fe 同位素组成范围很广,集中在-1.8‰和+1‰两个 δFe 值附近。这三种黄铁矿群还可以根据黄铁矿的结晶度和 S 同位素质量独立特征来区分。一组黄铁矿显示出具有正 ΔS 值(> +3‰)的未结晶黄铁矿矿物,而其他两组显示出更可变和接近 0‰ ΔS 值的黄铁矿再结晶边缘。值得注意的是,所有黄铁矿群在黄铁矿核心中都显示出正 ΔS 值,并且具有相似的微量元素组成。因此,我们认为其中两组黄铁矿经历了晚期流体循环,导致部分再结晶和 S 同位素质量独立特征稀释,但没有改变 Fe 同位素记录。考虑到黄铁矿及其相关有机质的矿物学和地球化学,我们得出结论,这种铁同位素系统源自早期成岩作用中氧化铁的异化还原(DIR)。我们的数据将异化还原的地质记录延长了超过 5.6 亿年,并证实了与最后共同祖先密切相关的微生物具有还原 Fe(III)的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验