Department of Psychology, University of Warwick.
Warwick Business School, University of Warwick.
Psychol Rev. 2020 Oct;127(5):719-748. doi: 10.1037/rev0000190. Epub 2020 Mar 19.
Human probability judgments are systematically biased, in apparent tension with Bayesian models of cognition. But perhaps the brain does not represent probabilities explicitly, but approximates probabilistic calculations through a process of sampling, as used in computational probabilistic models in statistics. Naïve probability estimates can be obtained by calculating the relative frequency of an event within a sample, but these estimates tend to be extreme when the sample size is small. We propose instead that people use a generic prior to improve the accuracy of their probability estimates based on samples, and we call this model the Bayesian sampler. The Bayesian sampler trades off the coherence of probabilistic judgments for improved accuracy, and provides a single framework for explaining phenomena associated with diverse biases and heuristics such as conservatism and the conjunction fallacy. The approach turns out to provide a rational reinterpretation of "noise" in an important recent model of probability judgment, the probability theory plus noise model (Costello & Watts, 2014, 2016a, 2017; Costello & Watts, 2019; Costello, Watts, & Fisher, 2018), making equivalent average predictions for simple events, conjunctions, and disjunctions. The Bayesian sampler does, however, make distinct predictions for conditional probabilities and distributions of probability estimates. We show in 2 new experiments that this model better captures these mean judgments both qualitatively and quantitatively; which model best fits individual distributions of responses depends on the assumed size of the cognitive sample. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
人类的概率判断存在系统偏差,这与认知的贝叶斯模型明显不一致。但是,大脑也许并没有明确地表示概率,而是通过一种抽样过程来近似概率计算,这种过程类似于统计学中的计算概率模型。通过计算事件在样本中的相对频率,可以得到简单的概率估计,但当样本量较小时,这些估计往往会出现极端情况。相反,我们提出人们可以使用通用先验来提高基于样本的概率估计的准确性,我们将这种模型称为贝叶斯抽样器。贝叶斯抽样器为了提高准确性而牺牲了概率判断的一致性,并为解释各种偏差和启发式(如保守主义和合取谬误)相关的现象提供了单一框架。这种方法为概率判断的一个重要近期模型——概率论加噪声模型(Costello & Watts,2014、2016a、2017;Costello & Watts,2019;Costello、Watts 和 Fisher,2018)中的“噪声”提供了一种理性的重新解释,对于简单事件、合取和析取,该方法提供了等效的平均预测。然而,贝叶斯抽样器对条件概率和概率估计分布有不同的预测。我们在 2 个新实验中表明,该模型在定性和定量上都更好地捕捉了这些平均判断;哪种模型最适合个体反应分布取决于所假设的认知样本大小。(PsycInfo 数据库记录(c)2020 APA,保留所有权利)。