Guo Zhenyuan, Wang Shiqin, Wang Jun
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):105-116. doi: 10.1109/TNNLS.2020.2977099. Epub 2021 Jan 4.
This article presents new theoretical results on global exponential synchronization of nonlinear coupled delayed memristive neural networks with reaction-diffusion terms and Dirichlet boundary conditions. First, a state-dependent memristive neural network model is introduced in terms of coupled partial differential equations. Next, two control schemes are introduced: distributed state feedback pinning control and distributed impulsive pinning control. A salient feature of these two pinning control schemes is that only partial information on the neighbors of pinned nodes is needed. By utilizing the Lyapunov stability theorem and Divergence theorem, sufficient criteria are derived to ascertain the global exponential synchronization of coupled neural networks via the two pining control schemes. Finally, two illustrative examples are elaborated to substantiate the theoretical results and demonstrate the advantages and disadvantages of the two control schemes.
本文给出了具有反应扩散项和狄利克雷边界条件的非线性耦合时滞忆阻神经网络全局指数同步的新理论结果。首先,根据耦合偏微分方程引入了一种依赖状态的忆阻神经网络模型。其次,介绍了两种控制方案:分布式状态反馈牵制控制和分布式脉冲牵制控制。这两种牵制控制方案的一个显著特点是只需要被牵制节点邻居的部分信息。利用李雅普诺夫稳定性定理和散度定理,推导了通过这两种牵制控制方案确定耦合神经网络全局指数同步的充分判据。最后,给出两个示例以证实理论结果,并说明这两种控制方案的优缺点。