Suppr超能文献

基于分布式钉扎控制的具有反应扩散项的耦合时滞忆阻神经网络的全局指数同步

Global Exponential Synchronization of Coupled Delayed Memristive Neural Networks With Reaction-Diffusion Terms via Distributed Pinning Controls.

作者信息

Guo Zhenyuan, Wang Shiqin, Wang Jun

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):105-116. doi: 10.1109/TNNLS.2020.2977099. Epub 2021 Jan 4.

Abstract

This article presents new theoretical results on global exponential synchronization of nonlinear coupled delayed memristive neural networks with reaction-diffusion terms and Dirichlet boundary conditions. First, a state-dependent memristive neural network model is introduced in terms of coupled partial differential equations. Next, two control schemes are introduced: distributed state feedback pinning control and distributed impulsive pinning control. A salient feature of these two pinning control schemes is that only partial information on the neighbors of pinned nodes is needed. By utilizing the Lyapunov stability theorem and Divergence theorem, sufficient criteria are derived to ascertain the global exponential synchronization of coupled neural networks via the two pining control schemes. Finally, two illustrative examples are elaborated to substantiate the theoretical results and demonstrate the advantages and disadvantages of the two control schemes.

摘要

本文给出了具有反应扩散项和狄利克雷边界条件的非线性耦合时滞忆阻神经网络全局指数同步的新理论结果。首先,根据耦合偏微分方程引入了一种依赖状态的忆阻神经网络模型。其次,介绍了两种控制方案:分布式状态反馈牵制控制和分布式脉冲牵制控制。这两种牵制控制方案的一个显著特点是只需要被牵制节点邻居的部分信息。利用李雅普诺夫稳定性定理和散度定理,推导了通过这两种牵制控制方案确定耦合神经网络全局指数同步的充分判据。最后,给出两个示例以证实理论结果,并说明这两种控制方案的优缺点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验