Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.
BMC Genomics. 2020 Mar 20;21(1):246. doi: 10.1186/s12864-020-6664-3.
Triticum and Aegilops diploid species have morphological and genetic diversity and are crucial genetic resources for wheat breeding. According to the chromosomal pairing-affinity of these species, their genome nomenclatures have been defined. However, evaluations of genome differentiation based on genome-wide nucleotide variations are still limited, especially in the three genomes of the genus Aegilops: Ae. caudata L. (CC genome), Ae. comosa Sibth. et Sm. (MM genome), and Ae. uniaristata Vis. (NN genome). To reveal the genome differentiation of these diploid species, we first performed RNA-seq-based polymorphic analyses for C, M, and N genomes, and then expanded the analysis to include the 12 diploid species of Triticum and Aegilops.
Genetic divergence of the exon regions throughout the entire chromosomes in the M and N genomes was larger than that between A- and A-genomes. Ae. caudata had the second highest genetic diversity following Ae. speltoides, the putative B genome donor of common wheat. In the phylogenetic trees derived from the nuclear and chloroplast genome-wide polymorphism data, the C, D, M, N, U, and S genome species were connected with short internal branches, suggesting that these diploid species emerged during a relatively short period in the evolutionary process. The highly consistent nuclear and chloroplast phylogenetic topologies indicated that nuclear and chloroplast genomes of the diploid Triticum and Aegilops species coevolved after their diversification into each genome, accounting for most of the genome differentiation among the diploid species.
RNA-sequencing-based analyses successfully evaluated genome differentiation among the diploid Triticum and Aegilops species and supported the chromosome-pairing-based genome nomenclature system, except for the position of Ae. speltoides. Phylogenomic and epigenetic analyses of intergenic and centromeric regions could be essential for clarifying the mechanisms behind this inconsistency.
普通小麦的近缘属二倍体物种具有丰富的形态和遗传多样性,是小麦遗传改良的重要遗传资源。根据这些物种的染色体配对亲和力,定义了它们的基因组命名法。然而,基于全基因组核苷酸变异的基因组分化评估仍然有限,特别是在属 Aegilops 的三个基因组中:Ae. caudata L.(CC 基因组)、Ae. comosa Sibth. et Sm.(MM 基因组)和 Ae. uniaristata Vis.(NN 基因组)。为了揭示这些二倍体物种的基因组分化,我们首先对 C、M 和 N 基因组进行了基于 RNA-seq 的多态性分析,然后将分析扩展到包括 12 种二倍体小麦和 Aegilops 物种。
M 和 N 基因组整个染色体上的外显子区域的遗传差异大于 A-和 A-基因组之间的差异。Ae. caudata 继 Ae. speltoides 之后具有第二高的遗传多样性,Ae. speltoides 是普通小麦的假定 B 基因组供体。从核和叶绿体全基因组多态性数据得出的系统发育树中,C、D、M、N、U 和 S 基因组的物种与短的内部分支相连,表明这些二倍体物种在进化过程中相对较短的时间内出现。核和叶绿体的高度一致的系统发育拓扑结构表明,二倍体小麦和 Aegilops 物种的核和叶绿体基因组在分化为每个基因组后共同进化,占二倍体物种之间大部分的基因组分化。
基于 RNA-seq 的分析成功评估了二倍体小麦和 Aegilops 物种之间的基因组分化,并支持基于染色体配对的基因组命名系统,除了 Ae. speltoides 的位置。基因间和着丝粒区域的系统发育和表观遗传分析对于阐明这种不一致的机制可能至关重要。