Suppr超能文献

针对包络调制噪声预测语音清晰度的双耳模型的进一步验证。

Further validation of a binaural model predicting speech intelligibility against envelope-modulated noises.

作者信息

Vicente Thibault, Lavandier Mathieu

机构信息

Univ Lyon, ENTPE, Laboratoire Génie Civil et Bâtiment, Rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France.

Univ Lyon, ENTPE, Laboratoire Génie Civil et Bâtiment, Rue Maurice Audin, 69518, Vaulx-en-Velin Cedex, France.

出版信息

Hear Res. 2020 May;390:107937. doi: 10.1016/j.heares.2020.107937. Epub 2020 Mar 6.

Abstract

Collin and Lavandier [J. Acoust. Soc. Am. 134, 1146-1159 (2013)] proposed a binaural model predicting speech intelligibility against envelope-modulated noises, evaluated in 24 acoustic conditions, involving similar masker types. The aim of the present study was to test the model robustness modeling 80 additional conditions, and evaluate the influence of its parameters using an approach inspired by a variance-based sensitivity analysis. First, the data from four experiments from the literature and one specifically designed for the present study were used to evaluate the prediction performance of the model, investigate potential interactions between its parameters, and define their values leading to the best predictions. A revision of the model allowed to account for binaural sluggishness. Finally, the optimized model was tested on an additional dataset not used to define its parameters. Overall, one hundred conditions split into six experiments were modeled. Correlation between data and predictions ranged from 0.85 to 0.96 across experiments, and mean absolute prediction errors were between 0.5 and 1.4 dB.

摘要

科林和拉万迪耶[《美国声学学会杂志》134, 1146 - 1159 (2013)]提出了一种双耳模型,该模型可预测在包络调制噪声下的言语可懂度,并在24种声学条件下进行了评估,这些条件涉及类似的掩蔽类型。本研究的目的是测试该模型在另外80种条件下建模的稳健性,并使用一种基于方差的敏感性分析方法来评估其参数的影响。首先,利用来自文献的四个实验的数据以及一个专门为本研究设计的实验数据,来评估模型的预测性能,研究其参数之间的潜在相互作用,并确定能带来最佳预测结果的参数值。对模型进行修订后能够考虑双耳迟缓现象。最后,在一个未用于定义其参数的额外数据集上对优化后的模型进行测试。总体而言,对分为六个实验的一百种条件进行了建模。各实验中数据与预测结果之间的相关性在0.85至0.96之间,平均绝对预测误差在0.5至1.4分贝之间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验