Suppr超能文献

为正常听力和听力障碍的听众建立双耳掩蔽模型和噪声与混响环境下言语可懂度模型。

Modelling binaural unmasking and the intelligibility of speech in noise and reverberation for normal-hearing and hearing-impaired listeners.

机构信息

Department of Linguistics-Audiology, Australian Hearing Hub, Macquarie University, New South Wales, 2109, Australia.

Univ. Lyon, ENTPE, Laboratoire de Tribologie et Dynamique des Systèmes UMR 5513, Rue M. Audin, 69518 Vaulx-en-Velin Cedex, France.

出版信息

J Acoust Soc Am. 2021 Nov;150(5):3275. doi: 10.1121/10.0006736.

Abstract

This study investigated the effect of hearing loss on binaural unmasking (BU) for the intelligibility of speech in noise. Speech reception thresholds (SRTs) were measured with normal-hearing (NH) listeners and older mildly hearing-impaired (HI) listeners while varying the presentation level of the stimuli, reverberation, modulation of the noise masker, and spatial separation of the speech and noise sources. On average across conditions, the NH listeners benefited more (by 0.6 dB) from BU than HI listeners. The binaural intelligibility model developed by Vicente, Lavandier, and Buchholz [J. Acoust. Soc. Am. 148, 3305-3317 (2020)] was used to describe the data, accurate predictions were obtained for the conditions considering moderate noise levels [50 and 60 dB sound pressure level (SPL)]. The interaural jitters that were involved in the prediction of BU had to be revised to describe the data measured at a lower level (40 dB SPL). Across all tested conditions, the correlation between the measured and predicted SRTs was 0.92, whereas the mean prediction error was 0.9 dB.

摘要

本研究调查了听力损失对双耳掩蔽(BU)在噪声中语音可懂度的影响。使用正常听力(NH)听众和年龄较大的轻度听力障碍(HI)听众测量语音接收阈值(SRT),同时改变刺激的呈现水平、混响、噪声掩蔽调制以及语音和噪声源的空间分离。平均而言,与 HI 听众相比,NH 听众从 BU 中获益更多(0.6dB)。Vicente、Lavandier 和 Buchholz [J. Acoust. Soc. Am. 148, 3305-3317 (2020)] 开发的双耳可懂度模型用于描述数据,对于考虑中等噪声水平[50 和 60 dB 声压级(SPL)]的条件,获得了准确的预测。用于描述在较低水平(40dB SPL)测量的数据的 BU 预测中,需要对涉及的耳间抖动进行修正。在所有测试条件下,测量的 SRT 与预测的 SRT 之间的相关性为 0.92,而平均预测误差为 0.9dB。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验