College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
College of Engineering & Computer Science, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
Nat Commun. 2020 Mar 19;11(1):1461. doi: 10.1038/s41467-020-15038-w.
Polymer crosslinking imbues chemical stability to thin films at the expense of lower molecular transportation rates. Here in this work we deployed molecular dynamics simulations to optimise the selection of crosslinking compounds that overcome this trade-off relationship. We validated these simulations using a series of experiments and exploited this finding to underpin the development of a pervaporation (PV) desalination thin-film composite membrane with water fluxes reaching 234.9 ± 8.1 kg m h and salt rejection of 99.7 ± 0.2 %, outperforming existing membranes for pervaporation and membrane distillation. Key to achieving this state-of-the-art desalination performance is the spray coating of 0.73 μm thick crosslinked dense, hydrophilic polymers on to electrospun nanofiber mats. The desalination performances of our polymer nanocomposites are harnessed here in this work to produce freshwater from brackish water, seawater and brine solutions, addressing the key environmental issue of freshwater scarcity.
聚合物交联以牺牲较低的分子传输速率为代价赋予薄膜化学稳定性。在这项工作中,我们通过分子动力学模拟来优化交联化合物的选择,以克服这种权衡关系。我们使用一系列实验验证了这些模拟,并利用这一发现为渗透蒸发(PV)淡化薄膜复合膜的开发提供了支持,该膜的水通量达到 234.9±8.1kg m h,盐截留率为 99.7±0.2%,超过了现有用于渗透蒸发和膜蒸馏的膜。实现这种最先进的脱盐性能的关键是在静电纺纳米纤维毡上喷涂 0.73μm 厚的交联致密亲水性聚合物。在这项工作中,我们利用聚合物纳米复合材料的脱盐性能从微咸水、海水和盐水溶液中生产淡水,解决了淡水短缺这一关键环境问题。