Suppr超能文献

基于 microRNA 的诊断模型可高精度预测人类可切除肺癌。

A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy.

机构信息

Department of Thoracic Surgery, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.

Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

出版信息

Commun Biol. 2020 Mar 19;3(1):134. doi: 10.1038/s42003-020-0863-y.

Abstract

Lung cancer, the leading cause of cancer death worldwide, is most frequently detected through imaging tests. In this study, we investigated serum microRNAs (miRNAs) as a possible early screening tool for resectable lung cancer. First, we used serum samples from participants with and without lung cancer to comprehensively create 2588 miRNAs profiles; next, we established a diagnostic model based on the combined expression levels of two miRNAs (miR-1268b and miR-6075) in the discovery set (208 lung cancer patients and 208 non-cancer participants). The model displayed a sensitivity of 99% and specificity of 99% in the validation set (1358 patients and 1970 non-cancer participants) and exhibited high sensitivity regardless of histological type and pathological TNM stage of the cancer. Moreover, the diagnostic index markedly decreased after lung cancer resection. Thus, the model we developed has the potential to markedly improve screening for resectable lung cancer.

摘要

肺癌是全球癌症死亡的主要原因,通常通过影像学检查进行检测。在本研究中,我们研究了血清 microRNAs(miRNAs)作为可切除肺癌的早期筛查工具的可能性。首先,我们使用来自肺癌患者和非癌症患者的血清样本,全面创建了 2588 个 miRNAs 图谱;接下来,我们在发现集(208 例肺癌患者和 208 名非癌症参与者)中基于两个 miRNAs(miR-1268b 和 miR-6075)的联合表达水平建立了一个诊断模型。该模型在验证集(1358 例患者和 1970 名非癌症参与者)中的灵敏度为 99%,特异性为 99%,并且无论癌症的组织学类型和病理 TNM 分期如何,均表现出较高的灵敏度。此外,肺癌切除后诊断指数明显下降。因此,我们开发的模型有可能显著提高可切除肺癌的筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验