Suppr超能文献

时间依赖性增强的荧光从荚膜红细菌 SB1003 及其对浓度温度和静磁场的关键依赖。

Time-dependent enhancement of fluorescence from Rhodobacter capsulatus SB1003 and its critical dependence on concentration temperature and static magnetic field.

机构信息

Department of Biochemistry, University of Calcutta, Kolkata, India.

Department of Physical Chemistry, Indian Association for the Cultivation of Science, Kolkata, India.

出版信息

J Biol Phys. 2020 Jun;46(2):151-167. doi: 10.1007/s10867-020-09545-6. Epub 2020 Mar 19.

Abstract

Continuous exposure of 395 nm light increases the fluorescence emission intensity of photosynthetic purple non-sulphur bacteria, Rhodobacter capsulatus (SB1003). We show that such an increase in fluorescence emission of extracellular pigment complexes (PC) from these photosynthetic bacteria depends on the concentration of the pigment and temperature and can also be modulated by the static magnetic field. The time-dependent enhanced emission disappears either at or below 300 K or below a threshold sample concentration (0.1 mg/ml). The enhanced emission reappears at this condition (T < 278 K) if a static magnetic field (395 mT) is introduced during fluorescence measurement. The time dependence of emission is expressed in terms of a first-order rate constant, k = dF/(Fdt). The sign of k shifts from positive to negative as PC concentration is lowered than a threshold value, implying onset of fluorescence decay (k < 0) rather than amplification (k > 0). At PC concentration higher than a threshold, k becomes negative if the temperature is lowered. But, surprisingly, at low temperature, a static magnetic field reverts the k value to positive. We explain the logical nature of k-switching and photo-dynamics of the aforesaid microbial fluorescence emission by aggregation of protoporphyrin rings present in the PC. While the simultaneous presence of decay in fluorescence and susceptibility to static magnetic field suggests the dominance of triplet states at low temperatures, the process is reversed by SMF-induced removal of spin degeneracy. At higher temperatures, the optical excitability and lack of magnetic response suggest the dominance of singlet states. We propose that the restructuring of the singlet-triplet distribution by intersystem crossing may be the basis of this logical behaviour. In context with microbial function, time-dependent enhancement of fluorescence also implies relay of red photons to the neighbouring microbes not directly exposed to the incident radiation, thus serving as an indirect photosynthetic regulator.

摘要

395nm 光的连续照射会增加光合紫色非硫细菌(Rhodobacter capsulatus,简称 SB1003)胞外色素复合物(PC)的荧光发射强度。我们发现,这些光合细菌的胞外色素复合物的荧光发射增强依赖于色素浓度和温度,同时也可以被静磁场调节。在低于 300K 或低于 0.1mg/ml 的样品浓度阈值时,这种增强的荧光发射会消失。如果在荧光测量过程中引入静磁场(395mT),则在低于该条件(T<278K)下,增强的荧光发射会重新出现。发射的时间依赖性以一阶速率常数 k=dF/(Fdt) 表示。当 PC 浓度低于阈值时,k 的符号从正变为负,这意味着荧光衰减(k<0)而不是放大(k>0)的开始。当 PC 浓度高于阈值时,如果温度降低,k 会变为负值。但是,令人惊讶的是,在低温下,静磁场会使 k 值变为正值。我们通过 PC 中存在的原卟啉环的聚集来解释上述微生物荧光发射的 k 开关和光动力学的逻辑性质。在低温下,荧光衰减和对静磁场的敏感性同时存在,这表明三重态占主导地位,而 SMF 诱导的自旋简并消除会使该过程反转。在较高温度下,光学激发性和缺乏磁响应表明单重态占主导地位。我们提出,通过体系间交叉使单重态-三重态分布重构可能是这种逻辑行为的基础。在微生物功能方面,荧光的时间依赖性增强也意味着将红色光子传递给未直接暴露于入射辐射的邻近微生物,从而作为间接的光合作用调节剂。

相似文献

2
Static magnetic field (SMF) sensing of the P(723)/P(689) photosynthetic complex.
Photochem Photobiol Sci. 2014 Dec;13(12):1719-29. doi: 10.1039/c4pp00295d. Epub 2014 Oct 15.
3
Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation.
Bioresour Technol. 2012 Aug;118:490-5. doi: 10.1016/j.biortech.2012.04.105. Epub 2012 May 27.
7
The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003.
J Bacteriol. 2007 Mar;189(5):1774-82. doi: 10.1128/JB.01395-06. Epub 2006 Dec 22.
8
Temperature dependence of electron transfer to the M-side bacteriopheophytin in rhodobacter capsulatus reaction centers.
J Phys Chem B. 2008 May 1;112(17):5487-99. doi: 10.1021/jp800082m. Epub 2008 Apr 11.
10
Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity.
Photosynth Res. 2016 Jan;127(1):77-87. doi: 10.1007/s11120-015-0117-x. Epub 2015 Mar 13.

本文引用的文献

4
5
Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes.
Chem Commun (Camb). 2015 May 11;51(38):8023-6. doi: 10.1039/c5cc01099c. Epub 2015 Apr 13.
6
Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity.
J Inorg Biochem. 2013 Oct;127:7-12. doi: 10.1016/j.jinorgbio.2013.06.004. Epub 2013 Jun 15.
7
In what time scale proton transfer takes place in a live CHO cell?
J Chem Phys. 2013 Jun 7;138(21):215102. doi: 10.1063/1.4807862.
8
Lessons from nature about solar light harvesting.
Nat Chem. 2011 Sep 23;3(10):763-74. doi: 10.1038/nchem.1145.
9
The residence probability: single molecule fluorescence correlation spectroscopy and reversible geminate recombination.
Phys Chem Chem Phys. 2011 Oct 6;13(37):16548-57. doi: 10.1039/c1cp20907h. Epub 2011 Aug 22.
10
Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions.
Bioresour Technol. 2010 Jul;101(14):5315-24. doi: 10.1016/j.biortech.2010.02.019. Epub 2010 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验