Xu Ming, Li Yu, Li Wenhui, Zhao Qiuyang, Zhang Qiulei, Le Kehao, Huang Ziwei, Yi Pengfei
Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Front Med (Lausanne). 2020 Mar 5;7:64. doi: 10.3389/fmed.2020.00064. eCollection 2020.
Tumor microenvironment is essential for breast cancer progression and metastasis. Our study sets out to examine the genes affecting stromal and immune infiltration in breast cancer progression and prognosis. This work provides an approach for quantifying stromal and immune scores by using ESTIMATE algorithm based on gene expression matrix of breast cancer patients in TCGA database. We found differentially expressed genes (DEGs) through limma R package. Functional enrichments were accessed through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Besides, we constructed a protein-protein network, identified several hub genes in Cytoscape, and discovered functionally similar genes in GeneMANIA. Hub genes were validated with prognostic data by Kaplan-Meier analysis both in The Cancer Genome Atlas (TCGA) database and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database and a meta-analysis of hub genes prognosis data was utilized in multiple databases. Furthermore, their relationship with infiltrating immune cells was evaluated by Tumor IMmune Estimation Resource (TIMER) web tool. Cox regression was utilized for overall survival (OS) and recurrence-free survival (RFS) in TCGA database and OS in METABRIC database in order to evaluate the impact of stromal and immune scores on patients prognosis. One thousand and eighty-five breast cancer patients were investigated and 480 differentiated expressed genes (DEGs) were found based on the analysis of mRNA expression profiles. Functional analysis of DEGs revealed their potential functions in immune response and extracellular interaction. Protein-protein interaction network gave evidence of 10 hub genes. Some of the hub genes could be used as predictive markers for patients prognosis. In this study, we found that tumor purity and specific immune cells infiltration varied in response to hub genes expression. The multivariate cox regression highlighted the fact that immune score played a detrimental role in overall survival (HR = 0.45, 95% CI: 0.27-0.74, = 0.002) and recurrence-free survival (HR = 0.41, 95% CI: 0.22-0.77, = 0.006) in TCGA database. These result was confirmed in METABRIC database that immune score was a protector of OS (HR = 0.88, 95% CI: 0.77-0.99, = 0.039). Our findings promote a better understanding of the potential genes behind the regulation of tumor microenvironment and cells infiltration. Immune score should be considered as a prognostic factor for patients' survival.
肿瘤微环境对乳腺癌的进展和转移至关重要。我们的研究旨在探究影响乳腺癌进展和预后中基质和免疫浸润的基因。这项工作提供了一种基于TCGA数据库中乳腺癌患者基因表达矩阵,使用ESTIMATE算法来量化基质和免疫评分的方法。我们通过limma R包发现了差异表达基因(DEG)。通过基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)通路分析来进行功能富集分析。此外,我们构建了一个蛋白质-蛋白质网络,在Cytoscape中鉴定了几个枢纽基因,并在GeneMANIA中发现了功能相似的基因。通过癌症基因组图谱(TCGA)数据库和国际乳腺癌分子分类联盟(METABRIC)数据库中的Kaplan-Meier分析,利用预后数据对枢纽基因进行验证,并对多个数据库中的枢纽基因预后数据进行荟萃分析。此外,通过肿瘤免疫估计资源(TIMER)网络工具评估它们与浸润免疫细胞的关系。在TCGA数据库中,利用Cox回归分析总生存期(OS)和无复发生存期(RFS),在METABRIC数据库中分析OS,以评估基质和免疫评分对患者预后的影响。对1085例乳腺癌患者进行了研究,基于mRNA表达谱分析发现了480个差异表达基因(DEG)。对DEG的功能分析揭示了它们在免疫反应和细胞外相互作用中的潜在功能。蛋白质-蛋白质相互作用网络显示了10个枢纽基因。其中一些枢纽基因可作为患者预后的预测标志物。在本研究中,我们发现肿瘤纯度和特定免疫细胞浸润随枢纽基因表达而变化。多变量Cox回归突出了这样一个事实,即免疫评分在TCGA数据库的总生存期(HR = 0.45,95%CI:0.27 - 0.74,P = 0.002)和无复发生存期(HR = 0.41,95%CI:0.22 - 0.77,P = 0.006)中起有害作用。这些结果在METABRIC数据库中得到证实,即免疫评分是OS的保护因素(HR = 0.88,95%CI:0.77 - 0.99,P = 0.039)。我们的研究结果有助于更好地理解肿瘤微环境调节和细胞浸润背后的潜在基因。免疫评分应被视为患者生存的一个预后因素。