Suppr超能文献

环境条件下氮还原反应的催化剂、电解质和电极工程的最新进展。

Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions.

作者信息

Hou Junbo, Yang Min, Zhang Junliang

机构信息

School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.

出版信息

Nanoscale. 2020 Apr 3;12(13):6900-6920. doi: 10.1039/d0nr00412j.

Abstract

With the conventional Haber-Bosch NH3 synthesis in industry requiring harsh pressures and high temperatures, artificial N2 fixation has been long sought after. The electrochemical nitrogen reduction reaction (NRR) could offer a solution by allowing NH3 production under ambient conditions. In this review, important recent findings on theoretical calculations and experimental exploration on the NRR at room temperature are systematically reviewed. Firstly, we discuss the mechanism of electrochemical heterogeneous catalysis for the NRR. The NRR is a multi-proton coupled electron transfer (PCET) process which implies that in addition to catalyst surface size effects, ligand and strain effects will also significantly influence the binding energy of the adsorbed N atoms, reaction intermediates and product species. Electrocatalysts including metals, metal nitrides, metal oxides and carbon-based materials will also be discussed at length. A linear scaling relationship seems to limit the NRR activity on most metals and metal oxides. Metal nitrides, however, follow the Mars-van Krevelen (MvK) mechanism which usually shows a lower potential energy barrier compared to the associative mechanism. Carbon-based materials and some single atom catalysts exhibit improved activity and selectivity due to ligand effects. Thus, electrolytes containing a proton donor might play a crucial role in the NRR. The limiting concentration of proton donors and the rate of proton transport to the active sites might be effective factors in boosting the selectivity of the NRR. Specifically, ionic liquids with high N2 solubility demonstrate much larger faradaic efficiency and would be promising candidates for use in NRR processes. Inspired by the characteristics of PCET, four strategies of electrode engineering were introduced including limiting protons, tuning the electron transport, modifying the electrode structure facilitating mass transport, and completely changing the NRR mechanism inspired by bio-nitrogenase and Li mediated N2 fixation.

摘要

由于工业上传统的哈伯-博施法合成氨需要苛刻的压力和高温,人们长期以来一直在寻求人工固氮的方法。电化学氮还原反应(NRR)可以通过在环境条件下生产氨来提供一种解决方案。在这篇综述中,系统地回顾了近期关于室温下NRR的理论计算和实验探索的重要发现。首先,我们讨论了NRR的电化学多相催化机理。NRR是一个多质子耦合电子转移(PCET)过程,这意味着除了催化剂表面尺寸效应外,配体和应变效应也将显著影响吸附氮原子、反应中间体和产物物种的结合能。还将详细讨论包括金属、金属氮化物、金属氧化物和碳基材料在内的电催化剂。线性标度关系似乎限制了大多数金属和金属氧化物上的NRR活性。然而,金属氮化物遵循马斯-范克雷维伦(MvK)机理,与缔合机理相比,该机理通常显示出较低的势能垒。由于配体效应,碳基材料和一些单原子催化剂表现出更高的活性和选择性。因此,含有质子供体的电解质可能在NRR中起关键作用。质子供体的极限浓度和质子向活性位点的传输速率可能是提高NRR选择性的有效因素。具体而言,具有高N2溶解度的离子液体表现出大得多的法拉第效率,有望用于NRR过程。受PCET特性的启发,介绍了四种电极工程策略,包括限制质子、调节电子传输、修饰电极结构以促进质量传输,以及受生物固氮酶和锂介导的N2固定启发完全改变NRR机理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验