Suppr超能文献

基于第一行过渡金属的合金催化剂的计算筛选——配体诱导的氮还原反应选择性

Computational Screening of First-Row Transition-Metal Based Alloy Catalysts-Ligand Induced N Reduction Reaction Selectivity.

作者信息

Das Arunendu, Mandal Shyama Charan, Nair Akhil S, Pathak Biswarup

机构信息

Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.

出版信息

ACS Phys Chem Au. 2021 Nov 29;2(2):125-135. doi: 10.1021/acsphyschemau.1c00021. eCollection 2022 Mar 23.

Abstract

Large-scale ammonia production through sustainable strategies from naturally abundant N under ambient conditions represents a major challenge from a future perspective. Ammonia is one of the promising carbon-free alternative energy carriers. The high energy required for N≡N bond dissociation during the Haber-Bosch process demands extreme reaction conditions. This problem could be circumvented by tuning Fe catalyst composition with the help of an induced ligand effect on the surface. In this work, we utilized density functional theory calculations on the Fe(110) surface alloyed with first-row transition-metal (TM) series (Fe-TM) to understand the catalytic activity that facilitates the electrochemical nitrogen reduction reaction (NRR). We also calculated the selectivity against the competitive hydrogen evolution reaction (HER) under electrochemical conditions. The calculated results are compared with those from earlier reports on the periodic Fe(110) and Fe(111) surfaces, and also on the (110) surface of the Fe nanocluster. Surface alloying with late TMs (Co, Ni, Cu) shows an improved NRR activity, whereas the low exchange current density observed for Fe-Co indicates less HER activity among them. Considering various governing factors, Fe-based alloys with Co (Fe-Co) showed enhanced overall performance compared to the periodic surface as well as other pure iron-based structures previously reported. Therefore, the iron-alloy based structured catalysts may also provide more opportunities in the future for enhancing NRR performance via electrochemical reduction pathways.

摘要

从未来的角度来看,在环境条件下通过可持续策略利用天然丰富的氮进行大规模氨生产是一项重大挑战。氨是一种有前景的无碳替代能源载体。哈伯-博施法过程中N≡N键解离所需的高能量要求极端的反应条件。通过在表面诱导配体效应来调整铁催化剂的组成,可以规避这个问题。在这项工作中,我们利用密度泛函理论计算了与第一行过渡金属(TM)系列(Fe-TM)合金化的Fe(110)表面,以了解促进电化学氮还原反应(NRR)的催化活性。我们还计算了在电化学条件下对竞争性析氢反应(HER)的选择性。将计算结果与早期关于周期性Fe(110)和Fe(111)表面以及Fe纳米团簇(110)表面的报告结果进行了比较。与晚期过渡金属(Co、Ni、Cu)进行表面合金化显示出改善的NRR活性,而Fe-Co观察到的低交换电流密度表明它们之间的HER活性较低。考虑到各种控制因素,与周期性表面以及先前报道的其他纯铁基结构相比,含Co的铁基合金(Fe-Co)显示出增强的整体性能。因此,基于铁合金的结构化催化剂未来也可能通过电化学还原途径为提高NRR性能提供更多机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0067/9954240/0fd960c20640/pg1c00021_0009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验