Suppr超能文献

基于聚二甲基硅氧烷(PDMS)和ZnSnO纳米线的纳米发电机通过微结构化实现压电增强

Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO Nanowires through Microstructuration.

作者信息

Rovisco Ana, Dos Santos Andreia, Cramer Tobias, Martins Jorge, Branquinho Rita, Águas Hugo, Fraboni Beatrice, Fortunato Elvira, Martins Rodrigo, Igreja Rui, Barquinha Pedro

机构信息

i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal.

Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy.

出版信息

ACS Appl Mater Interfaces. 2020 Apr 22;12(16):18421-18430. doi: 10.1021/acsami.9b21636. Epub 2020 Apr 1.

Abstract

The current trend for smart, self-sustainable, and multifunctional technology demands for the development of energy harvesters based on widely available and environmentally friendly materials. In this context, ZnSnO nanostructures show promising potential because of their high polarization, which can be explored in piezoelectric devices. Nevertheless, a pure phase of ZnSnO is hard to achieve because of its metastability, and obtaining it in the form of nanowires is even more challenging. Although some groups have already reported the mixing of ZnSnO nanostructures with polydimethylsiloxane (PDMS) to produce a nanogenerator, the resultant polymeric film is usually flat and does not take advantage of an enhanced piezoelectric contribution achieved through its microstructuration. Herein, a microstructured composite of nanowires synthesized by a seed-layer free hydrothermal route mixed with PDMS (ZnSnO@PDMS) is proposed to produce nanogenerators. PFM measurements show a clear enhancement of for single ZnSnO versus ZnO nanowires (23 ± 4 pm/V vs 9 ± 2 pm/V). The microstructuration introduced herein results in an enhancement of the piezoelectric effect of the ZnSnO nanowires, enabling nanogenerators with an output voltage, current, and instantaneous power density of 120 V, 13 μA, and 230 μW·cm, respectively. Even using an active area smaller than 1 cm, the performance of this nanogenerator enables lighting up multiple LEDs and other small electronic devices, thus proving great potential for wearables and portable electronics.

摘要

智能、自维持和多功能技术的当前趋势要求开发基于广泛可用且环保材料的能量收集器。在这种背景下,ZnSnO纳米结构因其高极化性而显示出有前景的潜力,可在压电器件中加以利用。然而,由于其亚稳性,很难获得纯相的ZnSnO,以纳米线形式获得它则更具挑战性。尽管一些研究小组已经报道了将ZnSnO纳米结构与聚二甲基硅氧烷(PDMS)混合以制造纳米发电机,但所得的聚合物薄膜通常是平的,没有利用通过微结构化实现的增强压电贡献。在此,提出了一种通过无籽层水热法合成的纳米线与PDMS混合的微结构复合材料(ZnSnO@PDMS)来制造纳米发电机。压电响应力显微镜测量表明,单个ZnSnO纳米线相对于ZnO纳米线的压电响应明显增强(23±4 pm/V对9±2 pm/V)。本文引入的微结构化导致ZnSnO纳米线的压电效应增强,使纳米发电机的输出电压、电流和瞬时功率密度分别达到120 V、13 μA和230 μW·cm²。即使使用小于1 cm²的有源面积,这种纳米发电机的性能也能够点亮多个发光二极管和其他小型电子设备,从而证明其在可穿戴设备和便携式电子产品方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16ab/7508038/2a84d937f721/am9b21636_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验