Song Xiaozhe, Li Ning, Zhang Huan, Wang Li, Yan Yanjun, Wang Hui, Wang Linyuan, Bian Zhaoyong
College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, P. R. China.
College of Water Sciences, Beijing Normal University, Beijing 100875, P. R. China.
ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17519-17527. doi: 10.1021/acsami.0c01278. Epub 2020 Apr 1.
Hydrogen peroxide (HO) production by electrocatalytic two-electron oxygen reduction shows promise as a replacement for energy-intensive anthraquinone oxidation or H/O direct synthesis. Here, we report on graphene-supported Ni single-atom (SA) electrocatalysts, which are synthesized by a simple surfactant-free reduction process with enhanced electrocatalytic activity and stability. Unlike conventional Ni nanoparticles or alloy catalysts, the well-dispersed Ni-SA sites lack adjacent Ni atoms. This structure promotes HO production by a two-electron oxygen reduction pathway under an alkaline condition (pH = 13). This catalyst exhibited enhanced HO selectivity (>94%) with a considerable mass activity (2.11 A mg at 0.60 V vs reversible hydrogen electrode), owing to the presence of oxygen functional groups and isolated Ni sites. Density functional theory calculations provide insights into the role of this catalyst in optimizing the two-electron oxygen reduction reaction pathway with high HO selectivity. This work suggests a new method for controlling reaction pathways in atomically dispersed non-noble catalysts.
通过电催化双电子氧还原产生过氧化氢(HO)有望替代能源密集型的蒽醌氧化或H/O直接合成。在此,我们报道了石墨烯负载的镍单原子(SA)电催化剂,其通过简单的无表面活性剂还原过程合成,具有增强的电催化活性和稳定性。与传统的镍纳米颗粒或合金催化剂不同,分散良好的镍单原子位点缺乏相邻的镍原子。这种结构在碱性条件(pH = 13)下通过双电子氧还原途径促进HO的产生。由于存在氧官能团和孤立的镍位点,该催化剂表现出增强的HO选择性(>94%)和可观的质量活性(在0.60 V相对于可逆氢电极时为2.11 A mg)。密度泛函理论计算深入了解了该催化剂在优化具有高HO选择性的双电子氧还原反应途径中的作用。这项工作提出了一种控制原子分散的非贵金属催化剂中反应途径的新方法。