Muthusamy Saravanakumar, Sabhapathy Palani, Raghunath Putikam, Sabbah Amr, Chang Yu-Chung, Krishnamoorthy Vimal, Ho Thi-Thong, Chiou Jau-Wern, Lin Ming-Chang, Chen Li-Chyong, Chen Kuei-Hsien
Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei, 11529, Taiwan.
Institute of Chemistry, Academia Sinica, Nangang, Taipei, 11529, Taiwan.
Small Methods. 2023 Oct;7(10):e2300234. doi: 10.1002/smtd.202300234. Epub 2023 Jul 3.
Electrochemical reduction of oxygen into hydrogen peroxide in an acidic medium offers an energy-efficient and green H O synthesis as an alternative to the energy-intensive anthraquinone process. Unfortunately, high overpotential, low production rates, and fierce competition from traditional four-electron reduction limit it. In this study, a metalloenzyme-like active structure is mimicked in carbon-based single-atom electrocatalysts for oxygen reduction to H O . Using a carbonization strategy, the primary electronic structure of the metal center with nitrogen and oxygen coordination is modulated, followed by epoxy oxygen functionalities close to the metal active sites. In an acidic medium, CoNOC active structures proceed with greater than 98% H O selectivity (2e /2H ) rather than CoNC active sites that are selective to H O (4e /4H ). Among all MNOC (M = Fe, Co, Mn, and Ni) single-atom electrocatalysts, the CoNOC is the most selective (> 98%) for H O production, with a mass activity of 10 A g at 0.60 V vs. RHE. X-ray absorption spectroscopy is used to identify the formation of unsymmetrical MNOC active structures. Experimental results are also compared to density functional theory calculations, which revealed that the structure-activity relationship of the epoxy-surrounded CoNOC active structure reaches optimum (ΔG ) binding energies for high selectivity.
在酸性介质中将氧气电化学还原为过氧化氢提供了一种节能且绿色的过氧化氢合成方法,可替代能源密集型的蒽醌法。不幸的是,高过电位、低产率以及来自传统四电子还原的激烈竞争限制了它。在本研究中,在碳基单原子电催化剂中模拟了类金属酶活性结构用于将氧气还原为过氧化氢。采用碳化策略,对具有氮和氧配位的金属中心的主要电子结构进行调制,随后在靠近金属活性位点处引入环氧氧官能团。在酸性介质中,CoNOC活性结构进行大于98%的过氧化氢选择性(2e⁻/2H⁺),而不是对水具有选择性的CoNC活性位点(4e⁻/4H⁺)。在所有MNOC(M = Fe、Co、Mn和Ni)单原子电催化剂中,CoNOC对过氧化氢生成的选择性最高(> 98%),在相对于可逆氢电极(RHE)为0.60 V时的质量活性为10 A g⁻¹。利用X射线吸收光谱来确定不对称MNOC活性结构的形成。实验结果还与密度泛函理论计算进行了比较,结果表明环氧包围的CoNOC活性结构的结构 - 活性关系达到了高选择性的最佳(ΔG)结合能。