School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
Nanoscale. 2020 Apr 3;12(13):7240-7255. doi: 10.1039/c9nr10009a.
Non-specific protein adsorption represents a significant challenge for the design of efficient and safe nanoparticles for biomedical applications since it may prevent functional ligands to target the desired specific receptors which can limit the efficacy of novel drug delivery systems and biosensors. The biofilm formation initiated by protein adsorption on surfaces limits the lifetime and safety of medical implants and tissue regenerative scaffolds. The development of biofouling resistant surfaces is therefore a major goal for the widespread uptake of nanomedicine. Here, we provide a relatively simple computational screening method based on the rational physically grounded criteria that may suffice in selection of surface grafted ligands for protein rejection, and test whether these criteria can be extrapolated from a specific protein to generic protein-resistant surfaces. Using all-atom molecular dynamics simulations we characterise four types of ligand functionalised surfaces at aqueous interfaces in terms of the surface hydrophobicity and ligand dynamics. We demonstrate how our hypothesised interfacial design based on the select physical characteristics of the ligated surfaces can enable the rejection of a protein from the surface. The ligand screening procedure and the detailed atomistic characterisation of the protein rejection process presented suggest that minimizing the adsorption of surface active proteins requires specific surface topographies and ligand chemistries that are able to maximise the entropic penalty associated with the restriction of the ligand dynamics and trapping interfacial water by adsorbed proteins.
非特异性蛋白质吸附是生物医学应用中设计高效和安全纳米粒子的一个重大挑战,因为它可能会阻止功能配体与所需的特定受体结合,从而限制新型药物输送系统和生物传感器的疗效。蛋白质在表面上的吸附引发的生物膜形成限制了医疗植入物和组织再生支架的使用寿命和安全性。因此,开发抗生物污垢表面是广泛采用纳米医学的主要目标。在这里,我们提供了一种相对简单的计算筛选方法,该方法基于合理的物理基础标准,足以用于选择用于蛋白质排斥的表面接枝配体,并测试这些标准是否可以从特定蛋白质推广到通用的抗蛋白质表面。我们使用全原子分子动力学模拟在水相界面上对四种类型的配体功能化表面进行了特征描述,包括表面疏水性和配体动力学。我们展示了如何根据连接表面的物理特性提出我们的界面设计假设,从而可以使蛋白质从表面排斥。提出的配体筛选程序和蛋白质排斥过程的详细原子级描述表明,要最小化表面活性蛋白质的吸附,需要具有特定表面形貌和配体化学的表面,这能够使与限制配体动力学和被吸附蛋白质捕获界面水相关的熵罚最大化。
Faraday Discuss. 2016-7-25
J Am Chem Soc. 2011-1-5
Nanoscale. 2017-7-6
Int J Mol Sci. 2021-7-16