文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

朝向形成蛋白质冠的裸露纳米材料表面的特异性。

Toward the Specificity of Bare Nanomaterial Surfaces for Protein Corona Formation.

机构信息

Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy.

出版信息

Int J Mol Sci. 2021 Jul 16;22(14):7625. doi: 10.3390/ijms22147625.


DOI:10.3390/ijms22147625
PMID:34299242
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8305441/
Abstract

Aiming at creating smart nanomaterials for biomedical applications, nanotechnology aspires to develop a new generation of nanomaterials with the ability to recognize different biological components in a complex environment. It is common opinion that nanomaterials must be coated with organic or inorganic layers as a mandatory prerequisite for applications in biological systems. Thus, it is the nanomaterial surface coating that predominantly controls the nanomaterial fate in the biological environment. In the last decades, interdisciplinary studies involving not only life sciences, but all branches of scientific research, provided hints for obtaining uncoated inorganic materials able to interact with biological systems with high complexity and selectivity. Herein, the fragmentary literature on the interactions between bare abiotic materials and biological components is reviewed. Moreover, the most relevant examples of selective binding and the conceptualization of the general principles behind recognition mechanisms were provided. Nanoparticle features, such as crystalline facets, density and distribution of surface chemical groups, and surface roughness and topography were encompassed for deepening the comprehension of the general concept of recognition patterns.

摘要

针对生物医学应用的智能纳米材料的开发,纳米技术旨在开发新一代的纳米材料,使其具有在复杂环境中识别不同生物成分的能力。人们普遍认为,纳米材料必须涂覆有机或无机层,这是在生物系统中应用的强制性前提条件。因此,纳米材料表面的涂层主要控制着纳米材料在生物环境中的命运。在过去的几十年中,涉及不仅生命科学,而且所有科学研究分支的跨学科研究为获得能够与具有高度复杂性和选择性的生物系统相互作用的无涂层无机材料提供了线索。在此,回顾了关于无生命材料与生物成分之间相互作用的零散文献。此外,还提供了选择性结合的最相关示例,并提出了识别机制背后的一般原理的概念化。为了深入了解识别模式的一般概念,涵盖了纳米颗粒的特征,例如晶面、表面化学基团的密度和分布、表面粗糙度和形貌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/1a5b8cc51976/ijms-22-07625-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/caa4a600768b/ijms-22-07625-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/116aada5b683/ijms-22-07625-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/d79f1aab77ce/ijms-22-07625-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/5ae6cde89620/ijms-22-07625-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/1a5b8cc51976/ijms-22-07625-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/caa4a600768b/ijms-22-07625-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/116aada5b683/ijms-22-07625-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/d79f1aab77ce/ijms-22-07625-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/5ae6cde89620/ijms-22-07625-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8bf/8305441/1a5b8cc51976/ijms-22-07625-g005.jpg

相似文献

[1]
Toward the Specificity of Bare Nanomaterial Surfaces for Protein Corona Formation.

Int J Mol Sci. 2021-7-16

[2]
Environmental dimensions of the protein corona.

Nat Nanotechnol. 2021-6

[3]
Impact of the protein corona on nanomaterial immune response and targeting ability.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020-7

[4]
Nanoparticle-protein corona complex: understanding multiple interactions between environmental factors, corona formation, and biological activity.

Nanotoxicology. 2021-12

[5]
Characterization of the bionano interface and mapping extrinsic interactions of the corona of nanomaterials.

Nanoscale. 2015-10-7

[6]
Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles.

Environ Pollut. 2023-1-15

[7]
Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona.

Adv Exp Med Biol. 2018

[8]
Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells.

ACS Appl Mater Interfaces. 2021-10-6

[9]
Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome.

Anal Bioanal Chem. 2018-3-12

[10]
Protein bio-corona: critical issue in immune nanotoxicology.

Arch Toxicol. 2017-3

引用本文的文献

[1]
High throughput screening for the design of protein binding polymers.

Chem Sci. 2025-7-1

[2]
The Effect of Polyethylene Terephthalate Nanoplastics on Amyloid-β Peptide Fibrillation.

Molecules. 2025-3-24

[3]
Biocorona on Iron Oxide Nanoparticles in a Complex Biotechnological Environment: Analysis of Proteins, Lipids, and Carbohydrates.

Small Sci. 2023-7-9

[4]
Interaction of Graphene Oxide Particles and Dendrimers with Human Breast Cancer Cells by Real-Time Microscopy.

Pharmaceutics. 2023-11-22

[5]
Spermine Oxidase-Substrate Electrostatic Interactions: The Modulation of Enzyme Function by Neighboring Colloidal ɣ-FeO.

Biomolecules. 2023-12-15

[6]
Dimensionality Reduction and Prediction of Impedance Data of Biointerface.

Sensors (Basel). 2022-5-31

[7]
Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production.

Front Vet Sci. 2022-5-10

本文引用的文献

[1]
Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate.

Commun Chem. 2020-1-20

[2]
Can an InChI for Nano Address the Need for a Simplified Representation of Complex Nanomaterials across Experimental and Nanoinformatics Studies?

Nanomaterials (Basel). 2020-12-11

[3]
Implicit Modeling of the Impact of Adsorption on Solid Surfaces for Protein Mechanics and Activity with a Coarse-Grained Representation.

J Phys Chem B. 2020-10-1

[4]
Role of carboxylic group pattern on protein surface in the recognition of iron oxide nanoparticles: A key for protein corona formation.

Int J Biol Macromol. 2020-12-1

[5]
Characterization of the Specific Interactions between Nanoparticles and Proteins at Residue-Resolution by Alanine Scanning Mutagenesis.

ACS Appl Mater Interfaces. 2020-8-5

[6]
The Influence of Nanoparticle Shape on Protein Corona Formation.

Small. 2020-6

[7]
Nanotechnology-Based Strategies to Develop New Anticancer Therapies.

Biomolecules. 2020-5-8

[8]
Theoretical modeling of interactions at the bio-nano interface.

Nanoscale. 2020-5-21

[9]
Graphene Surfaces Interaction with Proteins, Bacteria, Mammalian Cells, and Blood Constituents: The Impact of Graphene Platelet Oxidation and Thickness.

ACS Appl Mater Interfaces. 2020-5-6

[10]
Nanoscale in silico classification of ligand functionalised surfaces for protein adsorption resistance.

Nanoscale. 2020-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索