文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions.

作者信息

McLean Ben, Yarovsky Irene

机构信息

School of Engineering, RMIT University, Melbourne, 3001, Australia.

ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia.

出版信息

Small. 2024 Dec;20(51):e2405299. doi: 10.1002/smll.202405299. Epub 2024 Oct 9.


DOI:10.1002/smll.202405299
PMID:39380429
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11657047/
Abstract

Silica nanoparticles (SNPs), one of the most widely researched materials in modern science, are now commonly exploited in surface coatings, biomedicine, catalysis, and engineering of novel self-assembling materials. Theoretical approaches are invaluable to enhancing fundamental understanding of SNP properties and behavior. Tremendous research attention is dedicated to modeling silica structure, the silica-water interface, and functionalization of silica surfaces for tailored applications. In this review, the range of theoretical methodologies are discussed that have been employed to model bare silica and functionalized silica. The evolution of silica modeling approaches is detailed, including classical, quantum mechanical, and hybrid methods and highlight in particular the last decade of theoretical simulation advances. It is started with discussing investigations of bare silica systems, focusing on the fundamental interactions at the silica-water interface, following with a comprehensively review of the modeling studies that examine the interaction of silica with functional ligands, peptides, ions, surfactants, polymers, and carbonaceous species. The review is concluded with the perspective on existing challenges in the field and promising future directions that will further enhance the utility and importance of the theoretical approaches in guiding the rational design of SNPs for applications in engineering and biomedicine.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/9af795750078/SMLL-20-2405299-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/dae9965460ef/SMLL-20-2405299-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/dca1a821c992/SMLL-20-2405299-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/ea2ba4f921be/SMLL-20-2405299-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/cfe021c5a8c2/SMLL-20-2405299-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/2d2792ab23d5/SMLL-20-2405299-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/352399fa0de8/SMLL-20-2405299-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/6d01c796afe8/SMLL-20-2405299-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/07d43860383b/SMLL-20-2405299-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/161ea4a4ea1a/SMLL-20-2405299-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/279b4df89386/SMLL-20-2405299-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/665b5057a6ac/SMLL-20-2405299-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/abc8babb85fc/SMLL-20-2405299-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/524b3b859315/SMLL-20-2405299-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/acfde2092e45/SMLL-20-2405299-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/ba2e605ec4e9/SMLL-20-2405299-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/8659ee9cef0c/SMLL-20-2405299-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/b5c8c1aa7d1f/SMLL-20-2405299-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/149e5532412d/SMLL-20-2405299-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/39a082b107bf/SMLL-20-2405299-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/22880e9bc042/SMLL-20-2405299-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/f91ad0ee62c2/SMLL-20-2405299-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/280ec3407f08/SMLL-20-2405299-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/9af795750078/SMLL-20-2405299-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/dae9965460ef/SMLL-20-2405299-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/dca1a821c992/SMLL-20-2405299-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/ea2ba4f921be/SMLL-20-2405299-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/cfe021c5a8c2/SMLL-20-2405299-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/2d2792ab23d5/SMLL-20-2405299-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/352399fa0de8/SMLL-20-2405299-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/6d01c796afe8/SMLL-20-2405299-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/07d43860383b/SMLL-20-2405299-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/161ea4a4ea1a/SMLL-20-2405299-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/279b4df89386/SMLL-20-2405299-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/665b5057a6ac/SMLL-20-2405299-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/abc8babb85fc/SMLL-20-2405299-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/524b3b859315/SMLL-20-2405299-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/acfde2092e45/SMLL-20-2405299-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/ba2e605ec4e9/SMLL-20-2405299-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/8659ee9cef0c/SMLL-20-2405299-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/b5c8c1aa7d1f/SMLL-20-2405299-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/149e5532412d/SMLL-20-2405299-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/39a082b107bf/SMLL-20-2405299-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/22880e9bc042/SMLL-20-2405299-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/f91ad0ee62c2/SMLL-20-2405299-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/280ec3407f08/SMLL-20-2405299-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebf2/11657047/9af795750078/SMLL-20-2405299-g026.jpg

相似文献

[1]
Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions.

Small. 2024-12

[2]
Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.

Adv Protein Chem Struct Biol. 2011

[3]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[4]
Hydroxyapatite: A journey from biomaterials to advanced functional materials.

Adv Colloid Interface Sci. 2023-11

[5]
Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.

J Vis Exp. 2019-4-30

[6]
A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives.

Adv Colloid Interface Sci. 2024-2

[7]
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

J Phys Condens Matter. 2008-2-13

[8]
Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications.

Nanoscale. 2021-10-8

[9]
Recent advances in heavy metals uptake by tailored silica-based adsorbents.

Sci Total Environ. 2024-12-10

[10]
Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.

Acc Chem Res. 2020-8-18

本文引用的文献

[1]
Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations.

Nat Commun. 2024-5-14

[2]
Variations in proton transfer pathways and energetics on pristine and defect-rich quartz surfaces in water: Insights into the bimodal acidities of quartz.

J Colloid Interface Sci. 2024-7-15

[3]
High-Throughput Computational Screening of Solid-Binding Peptides.

J Chem Theory Comput. 2024-4-9

[4]
Towards predictive control of reversible nanoparticle assembly with solid-binding proteins.

Soft Matter. 2024-2-21

[5]
Generation of Amorphous Silica Surfaces with Controlled Roughness.

J Phys Chem A. 2023-11-23

[6]
Three-dimensional ordering of water molecules reflecting hydroxyl groups on sapphire (001) and α-quartz (100) surfaces.

Nanoscale. 2023-8-17

[7]
Emerging Trends of Computational Chemistry and Molecular Modeling in Froth Flotation: A Review.

ACS Eng Au. 2023-4-17

[8]
Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment.

Chem Rev. 2023-5-24

[9]
Molecular Dynamics Simulations on Epoxy/Silica Interfaces Using Stable Atomic Models of Silica Surfaces.

Langmuir. 2023-5-23

[10]
Evaluation guidelines for machine learning tools in the chemical sciences.

Nat Rev Chem. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索