Institute for Biophysics, Department of Nanobiotechnology (DNBT), University of Natural Resources and Life (BOKU) Sciences, Vienna, Muthgasse 11/II, 1190 Vienna, Austria.
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Nano Lett. 2020 Apr 8;20(4):2647-2653. doi: 10.1021/acs.nanolett.0c00205. Epub 2020 Mar 26.
Wood, as the most abundant carbon dioxide storing bioresource, is currently driven beyond its traditional use through creative innovations and nanotechnology. For many properties the micro- and nanostructure plays a crucial role and one key challenge is control and detection of chemical and physical processes in the confined microstructure and nanopores of the wooden cell wall. In this study, correlative Raman and atomic force microscopy show high potential for tracking in situ molecular rearrangement of wood polymers during compression. More water molecules (interpreted as wider cellulose microfibril distances) and disentangling of hemicellulose chains are detected in the opened cell wall regions, whereas an increase of lignin is revealed in the compressed areas. These results support a new more "loose" cell wall model based on flexible lignin nanodomains and advance our knowledge of the molecular reorganization during deformation of wood for optimized processing and utilization.
木材作为最丰富的二氧化碳储存生物资源,目前通过创造性的创新和纳米技术正在超越其传统用途。对于许多性能而言,微观和纳米结构起着至关重要的作用,其中一个关键挑战是控制和检测木质细胞壁的微结构和纳米孔中的化学和物理过程。在这项研究中,相关的拉曼和原子力显微镜显示出在压缩过程中跟踪木材聚合物分子重排的高潜力。在打开的细胞壁区域中检测到更多的水分子(解释为纤维素微纤维距离变宽)和半纤维素链的解缠,而在压缩区域中则发现木质素增加。这些结果支持了一个新的更“松散”的细胞壁模型,基于灵活的木质素纳米域,并推进了我们对木材变形过程中分子重排的认识,以实现优化的加工和利用。