Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.
Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan.
Am J Physiol Heart Circ Physiol. 2020 Jun 1;318(6):H1357-H1370. doi: 10.1152/ajpheart.00481.2019. Epub 2020 Mar 20.
Synapse-associated protein 97 (SAP97) is a scaffolding protein crucial for the functional expression of several cardiac ion channels and therefore proper cardiac excitability. Alterations in the functional expression of SAP97 can modify the ionic currents underlying the cardiac action potential and consequently confer susceptibility for arrhythmogenesis. In this study, we generated a murine model for inducible, cardiac-targeted Sap97 ablation to investigate arrhythmia susceptibility and the underlying molecular mechanisms. Furthermore, we sought to identify human SAP97 () variants that were associated with inherited arrhythmogenic disease. The murine model of cardiac-specific Sap97 ablation demonstrated several ECG abnormalities, pronounced action potential prolongation subject to high incidence of arrhythmogenic afterdepolarizations and notable alterations in the activity of the main cardiac ion channels. However, no mutations were found in 40 unrelated cases of genetically elusive long QT syndrome (LQTS). Instead, we provide the first evidence implicating a gain of function in human mutation resulting in an increase in Kv4.3 current () as a novel, potentially pathogenic substrate for Brugada syndrome (BrS). In conclusion, joins a growing list of genes encoding ion channel interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. Dysfunction in these critical components of cardiac excitability can potentially result in fatal cardiac disease. The gene encoding SAP97 () joins a growing list of genes encoding ion channel-interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. In this study we provide the first data supporting encoded SAP97's candidacy as a minor Brugada syndrome susceptibility gene.
突触相关蛋白 97(SAP97)是一种支架蛋白,对几种心脏离子通道的功能表达至关重要,因此对心脏兴奋性也很重要。SAP97 功能表达的改变可以改变心脏动作电位的基础离子电流,从而导致心律失常易感性。在这项研究中,我们生成了一种可诱导的、心脏靶向的 Sap97 缺失的小鼠模型,以研究心律失常易感性和潜在的分子机制。此外,我们试图确定与遗传性心律失常疾病相关的人类 SAP97()变体。心脏特异性 Sap97 缺失的小鼠模型表现出多种心电图异常,明显的动作电位延长,心律失常后除极的发生率高,主要心脏离子通道的活性也有明显改变。然而,在 40 例遗传隐匿性长 QT 综合征(LQTS)的无关病例中没有发现 突变。相反,我们提供了第一个证据,表明人类 突变的功能获得导致 Kv4.3 电流增加()作为一种新的、潜在的致 Brugada 综合征(BrS)的致病底物。总之, 加入了越来越多的编码离子通道相互作用蛋白(ChIPs)的基因列表,这些基因被认为是潜在的通道病易感性基因,因为它们能够调节离子通道的运输、靶向和调节,这对心脏电冲动的产生和传播至关重要。这些心脏兴奋性的关键组成部分的功能障碍可能导致致命的心脏疾病。编码 SAP97 的基因()加入了越来越多的编码离子通道相互作用蛋白(ChIPs)的基因列表,这些基因被认为是潜在的通道病易感性基因,因为它们能够调节离子通道的运输、靶向和调节,这对心脏电冲动的产生和传播至关重要。在这项研究中,我们提供了第一个支持编码 SAP97 作为 Brugada 综合征易感性基因的候选基因的数据。