Departments of Internal Medicine, Molecular and Integrative Physiology, and Pharmacology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48108, USA.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):E2134-43. doi: 10.1073/pnas.1109370109. Epub 2012 Apr 16.
The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.
心脏的电冲动依赖于心肌细胞跨膜离子流的协调相互作用。两个关键的离子电流机制是内向整流钾电流(I(K1)),它对维持细胞静息膜电位很重要,和钠电流(I(Na)),它在动作电位上升时提供快速去极化电流。通过控制静息膜电位,I(K1)改变钠通道的可用性,从而调节细胞兴奋性、动作电位持续时间和冲动传播速度。此外,I(K1)-I(Na)相互作用是决定负责异常、通常致命的心脏折返活动的电转子频率的关键决定因素。在这里,我们使用了一种基于分子和生化技术、急性基因转移或沉默以及电生理学的多学科方法,表明 I(K1)-I(Na)相互作用涉及它们各自的通道蛋白(Kir2.1 和 Na(V)1.5)在一个大分子复合物内的表达的相互调节。因此,一种通道的功能表达增加会相互调节另一种通道,从而增强心脏兴奋性。这种调节是模型独立的;它可以在从小鼠和大鼠心脏分离的心肌细胞中以及通过转基因和腺病毒介导的过表达/沉默中得到证明。我们还表明,突触后密度、Discs large 和紧密连接蛋白-1(PDZ)域蛋白 SAP97 是这个大分子复合物的一个组成部分。我们表明,Na(v)1.5 和 Kir2.1 之间的相互作用对心肌具有电生理后果,并且 SAP97 可能影响该复合物的完整性或 Na(v)1.5-Kir2.1 相互作用的性质。Na(v)1.5 和 Kir2.1 之间的相互调节以及各自的离子电流应该在心脏维持自身持续心律紊乱的能力中很重要。