Suppr超能文献

基于主成分的股票价格预测。

Stock price prediction using principal components.

机构信息

PhD Student, Department of Systems Engineering, Colorado State University, Fort Collins, Colorado, United States of America.

Professor, Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, United States of America.

出版信息

PLoS One. 2020 Mar 20;15(3):e0230124. doi: 10.1371/journal.pone.0230124. eCollection 2020.

Abstract

The literature provides strong evidence that stock price values can be predicted from past price data. Principal component analysis (PCA) identifies a small number of principle components that explain most of the variation in a data set. This method is often used for dimensionality reduction and analysis of the data. In this paper, we develop a general method for stock price prediction using time-varying covariance information. To address the time-varying nature of financial time series, we assign exponential weights to the price data so that recent data points are weighted more heavily. Our proposed method involves a dimension-reduction operation constructed based on principle components. Projecting the noisy observation onto a principle subspace results in a well-conditioned problem. We illustrate our results based on historical daily price data for 150 companies from different market-capitalization categories. We compare the performance of our method to two other methods: Gauss-Bayes, which is numerically demanding, and moving average, a simple method often used by technical traders and researchers. We investigate the results based on mean squared error and directional change statistic of prediction, as measures of performance, and volatility of prediction as a measure of risk.

摘要

文献提供了强有力的证据表明,股票价格可以从过去的价格数据中预测。主成分分析(PCA)确定了少数几个主要成分,可以解释数据集的大部分变化。这种方法常用于降维和数据分析。在本文中,我们开发了一种使用时变协方差信息进行股票价格预测的通用方法。为了解决金融时间序列的时变性,我们对价格数据赋予指数权重,以使最近的数据点受到更大的重视。我们提出的方法涉及基于主成分的降维操作。将噪声观测值投影到主子空间上会导致问题得到很好的处理。我们基于来自不同市值类别的 150 家公司的历史每日价格数据展示了我们的结果。我们将我们的方法与另外两种方法进行了比较:高斯 - 贝叶斯,这是一种数值要求较高的方法,以及移动平均,这是技术交易员和研究人员常用的简单方法。我们根据预测的均方误差和方向变化统计量以及预测的波动性作为风险的度量来研究结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5044/7083277/f5c92f1190b6/pone.0230124.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验