Taasti Vicki T, Hong Linda, Deasy Joseph O, Zarepisheh Masoud
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Med Phys. 2020 Jul;47(7):2779-2790. doi: 10.1002/mp.14148. Epub 2020 Apr 13.
We present a method for fully automated generation of high quality robust proton treatment plans using hierarchical optimization. To fill the gap between the two common extreme robust optimization approaches, that is, stochastic and worst-case, a robust optimization approach based on the p-norm function is used whereby a single parameter, , can be used to control the level of robustness in an intuitive way.
A fully automated approach to treatment planning using Expedited Constrained Hierarchical Optimization (ECHO) is implemented in our clinic for photon treatments. ECHO strictly enforces critical (inviolable) clinical criteria as hard constraints and improves the desirable clinical criteria sequentially, as much as is feasible. We extend our in-house developed ECHO codes for proton therapy and integrate it with a new approach for robust optimization. Multiple scenarios accounting for both setup and range uncertainties are included (13scenarios), and the maximum/mean/dose-volume constraints on organs-at-risk (OARs) and target are fulfilled in all scenarios. We combine the objective functions of the individual scenarios using the p-norm function. The p-norm with a parameter or result in the stochastic or the worst-case approach, respectively; an intermediate robustness level is obtained by employing -values in-between. While the worst-case approach only focuses on the worst-case scenario(s), the p-norm approach with a large p value ( ) resembles the worst-case approach without completely neglecting other scenarios. The proposed approach is evaluated on three head-and-neck (HN) patients and one water phantom with different parameters, . The results are compared against the stochastic approach (p-norm approach with ) and the worst-case approach, as well as the nonrobust approach (optimized solely on the nominal scenario).
The proposed algorithm successfully generates automated robust proton plans on all cases. As opposed to the nonrobust plans, the robust plans have narrower dose volume histogram (DVH) bands across all 13 scenarios, and meet all hard constraints (i.e., maximum/mean/dose-volume constraints) on OARs and the target for all scenarios. The spread in the objective function values is largest for the stochastic approach ( ) and decreases with increasing toward the worst-case approach. Compared to the worst-case approach, the p-norm approach results in DVH bands for clinical target volume (CTV) which are closer to the prescription dose at a negligible cost in the DVH for the worst scenario, thereby improving the overall plan quality. On average, going from the worst-case approach to the p-norm approach with , the median objective function value across all the scenarios is improved by 15% while the objective function value for the worst scenario is only degraded by 3%.
An automated treatment planning approach for proton therapy is developed, including robustness, dose-volume constraints, and the ability to control the robustness level using the p-norm parameter , to fit the priorities deemed most important.
我们提出一种使用分层优化全自动生成高质量稳健质子治疗计划的方法。为填补两种常见的极端稳健优化方法(即随机法和最坏情况法)之间的空白,我们使用了一种基于p范数函数的稳健优化方法,通过单个参数 能够以直观的方式控制稳健性水平。
我们的临床机构采用了一种使用加速约束分层优化(ECHO)进行治疗计划的全自动方法用于光子治疗。ECHO严格将关键(不可侵犯)临床标准作为硬约束,并在可行的情况下依次改善理想的临床标准。我们将内部开发的ECHO代码扩展用于质子治疗,并将其与一种新的稳健优化方法相结合。纳入了多种考虑设置和射程不确定性的情况(13种情况),并且在所有情况下均满足对危及器官(OAR)和靶区的最大/平均/剂量体积约束。我们使用p范数函数组合各个情况的目标函数。参数 或 的p范数分别导致随机法或最坏情况法;通过采用介于两者之间的 值可获得中间稳健性水平。虽然最坏情况法仅关注最坏情况,但具有较大p值( )的p范数法类似于最坏情况法,而不会完全忽略其他情况。所提出的方法在三名头颈部(HN)患者和一个具有不同参数 的水模体上进行了评估。将结果与随机法( 的p范数法)、最坏情况法以及非稳健法(仅在标称情况下优化)进行比较。
所提出的算法在所有病例上均成功生成了自动稳健质子计划。与非稳健计划不同,稳健计划在所有13种情况下具有更窄的剂量体积直方图(DVH)带,并且满足所有情况下对OAR和靶区的所有硬约束(即最大/平均/剂量体积约束)。目标函数值的离散度对于随机法( )最大,并随着 增加朝着最坏情况法减小。与最坏情况法相比,p范数法导致临床靶区(CTV)的DVH带更接近处方剂量,而在最坏情况下DVH的代价可忽略不计,从而提高了总体计划质量。平均而言,从最坏情况法转变为 的p范数法时,所有情况下目标函数值的中位数提高了15%,而最坏情况下的目标函数值仅降低了3%。
开发了一种用于质子治疗的自动治疗计划方法,包括稳健性、剂量体积约束以及使用p范数参数 控制稳健性水平的能力,以符合被认为最重要的优先级。