Williams Benjamin P, Young Allison P, Andoni Ilektra, Han Yong, Lo Wei-Shang, Golden Matthew, Yang Jane, Lyu Lian-Ming, Kuo Chun-Hong, Evans James W, Huang Wenyu, Tsung Chia-Kuang
Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA.
Ames Laboratory-USDOE and Department of Physics & Astronomy, Iowa State University, Ames, IA, 50011, USA.
Angew Chem Int Ed Engl. 2020 Jun 22;59(26):10574-10580. doi: 10.1002/anie.202001067. Epub 2020 Apr 16.
Controlling the surface composition of shaped bimetallic nanoparticles could offer precise tunability of geometric and electronic surface structure for new nanocatalysts. To achieve this goal, a platform for studying the intermixing process in a shaped nanoparticle was designed, using multilayered Pd-Ni-Pt core-shell nanocubes as precursors. Under mild conditions, the intermixing between Ni and Pt could be tuned by changing layer thickness and number, triggering intermixing while preserving nanoparticle shape. Intermixing of the two metals is monitored using transmission electron microscopy. The surface structure evolution is characterized using electrochemical methanol oxidation. DFT calculations suggest that the low-temperature mixing is enhanced by shorter diffusion lengths and strain introduced by the layered structure. The platform and insights presented are an advance toward the realization of shape-controlled multimetallic nanoparticles tailored to each potential application.
控制成形双金属纳米颗粒的表面组成可为新型纳米催化剂的几何和电子表面结构提供精确的可调性。为实现这一目标,设计了一个用于研究成形纳米颗粒中混合过程的平台,使用多层Pd-Ni-Pt核壳纳米立方体作为前驱体。在温和条件下,通过改变层厚度和层数可以调节Ni和Pt之间的混合,在保持纳米颗粒形状的同时引发混合。使用透射电子显微镜监测两种金属的混合。利用电化学甲醇氧化对表面结构演变进行表征。密度泛函理论计算表明,层状结构引入的较短扩散长度和应变增强了低温混合。所展示的平台和见解朝着实现针对每种潜在应用定制的形状可控多金属纳米颗粒迈出了一步。