Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
Cytometry A. 2020 May;97(5):483-495. doi: 10.1002/cyto.a.23997. Epub 2020 Mar 20.
Bone healing involves the interplay of immune cells, mesenchymal cells, and vasculature over the time course of regeneration. Approaches to quantify the spatiotemporal aspects of bone healing at cellular resolution during long bone healing do not yet exist. Here, a novel technique termed Limbostomy is presented, which combines intravital microendoscopy with an osteotomy. This design allows a modular combination of an internal fixator plate with a gradient refractive index (GRIN) lens at various depths in the bone marrow and can be combined with a surgical osteotomy procedure. The field of view (FOV) covers a significant area of the fracture gap and allows monitoring cellular processes in vivo. The GRIN lens causes intrinsic optical aberrations which have to be corrected. The optical system was characterized and a postprocessing algorithm was developed. It corrects for wave front aberration-induced image plane deformation and for background and noise signals, enabling us to observe subcellular processes. Exemplarily, we quantitatively and qualitatively analyze angiogenesis in bone regeneration. We make use of a transgenic reporter mouse strain with nucleargreen fluorescent protein and membrane-bound tdTomato under the Cadherin-5 promoter. We observe two phases of vascularization. First, rapid vessel sprouting pervades the FOV within 3-4 days after osteotomy. Second, the vessel network continues to be dynamically remodeled until the end of our observation time, 14 days after surgery. Limbostomy opens a unique set of opportunities and allows further insight on spatiotemporal aspects of bone marrow biology, for example, hematopoiesis, analysis of cellular niches, immunological memory, and vascularization in the bone marrow during health and disease. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
骨愈合涉及免疫细胞、间充质细胞和脉管系统在再生过程中的相互作用。目前还没有方法可以定量分析长骨愈合过程中细胞分辨率下骨愈合的时空方面。这里提出了一种新的技术,称为肢体切开术,它将活体显微镜检查与截骨术相结合。这种设计允许在骨髓的不同深度将内部固定器板与梯度折射率 (GRIN) 透镜以模块化的方式组合,并与手术截骨术相结合。视场 (FOV) 覆盖了骨折间隙的很大一部分区域,并允许在体内监测细胞过程。GRIN 透镜会引起固有光学像差,必须对其进行校正。对光学系统进行了表征并开发了一种后处理算法。它可以校正波前像差引起的像平面变形以及背景和噪声信号,从而使我们能够观察亚细胞过程。例如,我们对骨再生中的血管生成进行了定量和定性分析。我们利用了一种带有核绿色荧光蛋白和膜结合 tdTomato 的转基因报告小鼠品系,该品系在钙黏蛋白 5 启动子下表达。我们观察到两个血管生成阶段。首先,在截骨术后 3-4 天内,快速的血管芽出现在 FOV 中。其次,血管网络继续动态重塑,直到手术后 14 天我们的观察结束。肢体切开术提供了一组独特的机会,并允许进一步深入了解骨髓生物学的时空方面,例如造血、细胞龛分析、免疫记忆和健康和疾病期间骨髓中的血管生成。© 2020 作者。细胞计量学杂志由 Wiley 期刊出版公司代表国际细胞计量学会出版。