Tightiz Lilia, Nasab Morteza Azimi, Yang Hyosik, Addeh Abdoljalil
Department of Computer Science and Engineering, Sejong University, 05006, Seoul, South Korea.
Young Researchers and Elite club, Borujerd Branch, Islamic Azad university, Borujerd, Iran.
ISA Trans. 2020 Aug;103:63-74. doi: 10.1016/j.isatra.2020.03.022. Epub 2020 Mar 14.
This research work put forward an intelligent method for diagnosis and classification of power transformers faults based on the instructive Dissolved Gas Analysis Method (DGAM) attributes and machine learning algorithms. In the proposed method, 14 attributes obtained through DGAM are utilized as the initial and unprocessed inputs of Adaptive Neuro-Fuzzy Inference System (ANFIS). In this method, attribute selection and improved learning algorithm are utilized to enhance fault detection and recognition precision. In the propounded fault detection and classification method, the most instructive attributes obtained by DGAM are selected by association rules learning technique (ARLT). Using efficient enlightening attributes and eliminating tautological attributes lead to higher accuracy and superior operation. Furthermore, appropriate training of ANFIS has significant effect on its precision and robustness. Therefore, Black Widow Optimization Algorithm (BWOA) is applied to train the ANFIS. Having excellent exploration and extraction capability, fast convergence speed and simplicity is the main reason for choosing the BWOA as the learning algorithm. Two industrial datasets are utilized to test and evaluate the performance of the put forward method. The results show that the propounded diagnosis system has high accuracy, robust performance and short run time. Selecting the most educative attributes of DGAM, training ANFIS optimally, improving the robustness of ANFIS and increasing the classification accuracy are the main contribution of this paper in the field of power transformer fault detection and classification.
这项研究工作基于具有指导意义的溶解气体分析方法(DGAM)属性和机器学习算法,提出了一种用于电力变压器故障诊断和分类的智能方法。在所提出的方法中,通过DGAM获得的14个属性被用作自适应神经模糊推理系统(ANFIS)的初始和未处理输入。在该方法中,利用属性选择和改进的学习算法来提高故障检测和识别精度。在提出的故障检测和分类方法中,通过关联规则学习技术(ARLT)选择由DGAM获得的最具指导意义的属性。使用有效的启发性属性并消除同义反复的属性可导致更高的准确性和更好的运行效果。此外,对ANFIS进行适当的训练对其精度和鲁棒性有显著影响。因此,应用黑寡妇优化算法(BWOA)来训练ANFIS。选择BWOA作为学习算法的主要原因是其具有出色的探索和提取能力、快速的收敛速度以及简单性。利用两个工业数据集来测试和评估所提出方法的性能。结果表明,所提出的诊断系统具有高精度、鲁棒的性能和较短的运行时间。选择DGAM中最具教育意义的属性、对ANFIS进行优化训练、提高ANFIS的鲁棒性以及提高分类准确性是本文在电力变压器故障检测和分类领域的主要贡献。