Suppr超能文献

基于软计算模型和改进的伽马检验的黑寡妇优化算法的悬浮泥沙负荷预测。

Suspended sediment load prediction based on soft computing models and Black Widow Optimization Algorithm using an enhanced gamma test.

机构信息

Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.

Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran.

出版信息

Environ Sci Pollut Res Int. 2021 Sep;28(35):48253-48273. doi: 10.1007/s11356-021-14065-4. Epub 2021 Apr 27.

Abstract

The suspended sediment load (SSL) prediction is one of the most important issues in water engineering. In this article, the adaptive neuro-fuzzy interface system (ANFIS) and support vector machine (SVM) were used to estimate the SLL of two main tributaries of the Telar River placed in the north of Iran. The main Telar River had two main tributaries, namely, the Telar and the Kasilian. A new evolutionary algorithm, namely, the black widow optimization algorithm (BWOA), was used to enhance the precision of the ANFIS and SVM models for predicting daily SSL. The lagged rainfall, temperature, discharge, and SSL were used as the inputs to the models. The present study used a new hybrid Gamma test to determine the best input scenario. In the next step, the best input combination was determined based on the gamma value. In this research, the abilities of the ANFIS-BWOA and SVM-BWOA were benchmarked with the ANFIS-bat algorithm (BA), SVM-BA, SVM-particle swarm optimization (PSO), and ANFIS-PSO. The mean absolute error (MAE) of ANFIS-BWOA was 0.40%, 2.2%, and 2.5% lower than those of ANFIS-BA, ANFIS-PSO, and ANFIS models in the training level for Telar River. It was concluded that the ANFIS-BWOA had the highest value of R among other models in the Telar River. The MAE of the ANFIS-BWOA, SVM-BWOA, SVM-PSO, SVM-BA, and SVM models were 899.12 (Ton/day), 934.23 (Ton/day), 987.12 (Ton/day), 976.12, and 989.12 (Ton/day), respectively, in the testing level for the Kasilian River. An uncertainty analysis was used to investigate the effect of uncertainty of the inputs (first scenario) and the model parameters (the second scenario) on the accuracy of models. It was observed that the input uncertainty higher than the parameter uncertainty.

摘要

悬浮泥沙负荷 (SSL) 预测是水利工程中最重要的问题之一。本文采用自适应神经模糊接口系统 (ANFIS) 和支持向量机 (SVM) 对伊朗北部两条主要支流的 SSL 进行估算。主特拉尔河有两条主要支流,即特拉尔河和卡西米利安河。一种新的进化算法,即黑寡妇优化算法 (BWOA),被用于提高 ANFIS 和 SVM 模型预测日 SSL 的精度。滞后降雨、温度、流量和 SSL 被用作模型的输入。本研究使用了一种新的混合伽马检验来确定最佳输入方案。下一步,根据伽马值确定最佳输入组合。在本研究中,ANFIS-BWOA 和 SVM-BWOA 的能力与 ANFIS-蝙蝠算法 (BA)、SVM-BA、SVM-粒子群优化 (PSO) 和 ANFIS-PSO 进行了基准测试。在特拉尔河的训练水平上,ANFIS-BWOA 的平均绝对误差 (MAE) 比 ANFIS-BA、ANFIS-PSO 和 ANFIS 模型分别低 0.40%、2.2%和 2.5%。结果表明,在特拉尔河,ANFIS-BWOA 的 R 值高于其他模型。在卡西米利安河的测试水平上,ANFIS-BWOA、SVM-BWOA、SVM-PSO、SVM-BA 和 SVM 模型的 MAE 分别为 899.12(吨/天)、934.23(吨/天)、987.12(吨/天)、976.12 和 989.12(吨/天)。不确定性分析用于研究输入(第一方案)和模型参数(第二方案)不确定性对模型精度的影响。结果表明,输入不确定性高于参数不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验