Suppr超能文献

评估一种金属伪影降低算法和一种优化滤波器在使用锥形束计算机断层扫描估计种植体周围骨缺损中的作用:一项体外研究。

Evaluation of a metal artifact reduction algorithm and an optimization filter in the estimation of peri-implant dehiscence defects by using cone beam computed tomography: an in-vitro study.

机构信息

Assistant Professor, Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Bolu Abant İzzet Baysal University, Ankara, Turkey.

Professor, Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey; Professor, OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.

出版信息

Oral Surg Oral Med Oral Pathol Oral Radiol. 2020 Aug;130(2):209-216. doi: 10.1016/j.oooo.2020.02.005. Epub 2020 Mar 18.

Abstract

OBJECTIVES

The aim of this study was to assess the effect of a metal artifact reduction (MAR) algorithm and the adaptive image noise optimizer (AINO) optimization filter in the detection of peri-implant dehiscences with cone beam computed tomography (CBCT).

STUDY DESIGN

Nine implants (3 zirconium, 3 titanium, and 3 zirconium-titanium) were placed in 3 sheep heads. Dehiscences were created on the buccal and lingual/palatal surfaces. A total of 9 defects and 9 controls with no defects were evaluated by 3 observers. Each sheep head was scanned 5 times with 4 scan modes; (1) without MAR/without AINO; (2) with MAR/without AINO; (3) without MAR/with AINO; and (4) with MAR/with AINO. Receiver operating characteristic analysis and weighted kappa coefficients were used to calculate diagnostic efficacy and intra- and interobserver agreements for each implant type and scan mode.

RESULTS

For all implant types, dehiscences were most accurately detected when both MAR and AINO were applied (P ≤ .045). Detection of dehiscences was more accurate with titanium implants (P ≤ .040). There were no significant differences in agreement among and between the observers.

CONCLUSIONS

The use of both MAR and AINO enhanced the detection accuracy of artificially created dehiscences in proximity to implants. Their combined use is recommended for detecting peri-implant dehiscences.

摘要

目的

本研究旨在评估金属伪影降低(MAR)算法和自适应图像噪声优化(AINO)优化滤波器在锥形束计算机断层扫描(CBCT)中检测种植体周围骨缺损中的效果。

研究设计

将 9 个种植体(3 个氧化锆、3 个钛和 3 个氧化锆钛)植入 3 个羊头。在颊侧和舌侧/腭侧表面制造骨缺损。由 3 名观察者评估总共 9 个缺损和 9 个无缺损对照。每个羊头用 4 种扫描模式扫描 5 次;(1)无 MAR/无 AINO;(2)有 MAR/无 AINO;(3)无 MAR/有 AINO;(4)有 MAR/有 AINO。使用受试者工作特征分析和加权 kappa 系数计算每种种植体类型和扫描模式的诊断效能和观察者内和观察者间的一致性。

结果

对于所有种植体类型,当同时应用 MAR 和 AINO 时,骨缺损的检测最准确(P≤.045)。钛种植体的检测更准确(P≤.040)。观察者之间和之间的一致性没有显著差异。

结论

同时使用 MAR 和 AINO 提高了在接近种植体的位置人工制造的骨缺损的检测准确性。建议联合使用这两种方法来检测种植体周围骨缺损。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验