Chemical Process Engineering (CVT), University of Bremen, Leobener Str. 6, 28359, Bremen, Germany.
Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359, Bremen, Germany.
Anal Bioanal Chem. 2020 Jun;412(16):3903-3914. doi: 10.1007/s00216-020-02557-0. Epub 2020 Mar 21.
State-of-the-art dielectrophoretic (DEP) separation techniques provide unique properties to separate particles from a liquid or particles with different properties such as material or morphology from each other. Such separators do not operate at throughput that is sufficient for a vast fraction of separation tasks. This limitation exists because high electric field gradients are required to drive the separation which are generated by electrode microstructures that limit the maximum channel size. Here, we investigate DEP filtration, a technique that uses open porous microstructures instead of microfluidic devices to easily increase the filter cross section and, therefore, also the processable throughput by several orders of magnitude. Previously, we used simple microfluidic porous structures to derive design rules predicting the influence of key parameters on DEP filtration in real complex porous filters. Here, we study in depth DEP filtration in microporous ceramics and underpin the previously postulated dependencies by a broad parameter study (Lorenz et al., 2019). We will further verify our previous claim that the main separation mechanism is indeed positive DEP trapping by showing that we can switch from positive to negative DEP trapping when we increase the electric conductivity of the suspension. Two clearly separated trapping mechanisms (positive and negative DEP trapping) at different conductivities can be observed, and the transition between them matches theoretical predictions. This lays the foundation for selective particle trapping, and the results are a major step towards DEP filtration at high throughput to solve existing separation problems such as scrap recovery or cell separation in liquid biopsy. Graphical abstract.
最先进的介电泳(DEP)分离技术具有独特的性质,可以将颗粒从液体中分离出来,或者将具有不同性质(如材料或形态)的颗粒彼此分离。这种分离器的处理量不足以满足大量分离任务的需求。这种局限性的存在是因为需要高的电场梯度来驱动分离,而这些梯度是由电极微结构产生的,电极微结构限制了最大通道尺寸。在这里,我们研究了介电泳过滤技术,该技术使用开放式多孔微结构代替微流控器件,以轻松增加过滤器的横截面积,从而将处理量提高几个数量级。以前,我们使用简单的微流控多孔结构来推导设计规则,预测关键参数对真实复杂多孔过滤器中介电泳过滤的影响。在这里,我们深入研究了微孔陶瓷中的介电泳过滤,并通过广泛的参数研究(Lorenz 等人,2019 年)来验证以前提出的依赖性。我们将通过展示当我们增加悬浮液的电导率时,我们可以从正介电泳捕获切换到负介电泳捕获,进一步验证我们之前的说法,即主要的分离机制确实是正介电泳捕获。可以观察到两种明显分离的捕获机制(正介电泳捕获和负介电泳捕获)在不同的电导率下,它们之间的转变符合理论预测。这为选择性颗粒捕获奠定了基础,并且结果是朝着高通量介电泳过滤迈出的重要一步,以解决现有的分离问题,如废料回收或液体活检中的细胞分离。