Fu Jiehao, Chen Shanshan, Yang Ke, Jung Sungwoo, Lv Jie, Lan Linkai, Chen Haiyan, Hu Dingqin, Yang Qianguang, Duan Tainan, Kan Zhipeng, Yang Changduk, Sun Kuan, Lu Shirong, Xiao Zeyun, Li Yongfang
Organic Semiconductor Research Center, Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P. R. China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China.
Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing 400044, P. R. China.
iScience. 2020 Mar 27;23(3):100965. doi: 10.1016/j.isci.2020.100965. Epub 2020 Mar 6.
Here we introduce a σ-hole-containing volatile solid additive, 1, 4-diiodotetrafluorobenzene (A3), in PM6:Y6-based OSCs. Aside from the appropriate volatility of A3 additive, the synergetic halogen interactions between A3 and photoactive matrix contribute to more condensed and ordered molecular arrangement in the favorable interpenetrating donor/acceptor domains. As a result, greatly accelerated charge transport process with suppressed charge recombination possibility is observed and ultimately a champion PCE value of 16.5% is achieved. Notably, the A3 treated OSCs can maintain a high efficiency of over 16.0% in a wide concentration range of A3 additive between 10 and 35 mg/mL. The A3-treated device shows excellent stability with an efficiency of 15.9% after 360-h storage. This work demonstrates that the σ-hole interaction can be applied to enhance the OSC performance and highlights the importance of non-covalent interactions in the optoelectronic materials.
在此,我们在基于PM6:Y6的有机太阳能电池(OSCs)中引入了一种含σ-空穴的挥发性固体添加剂1,4-二碘四氟苯(A3)。除了A3添加剂具有合适的挥发性外,A3与光活性基质之间的协同卤素相互作用有助于在有利的互穿供体/受体域中形成更致密且有序的分子排列。结果,观察到电荷传输过程大大加速,电荷复合可能性降低,最终实现了16.5%的最佳功率转换效率(PCE)值。值得注意的是,经A3处理的OSCs在10至35 mg/mL的宽A3添加剂浓度范围内可保持超过16.0%的高效率。经A3处理的器件表现出优异的稳定性,储存360小时后效率为15.9%。这项工作表明σ-空穴相互作用可用于提高OSC性能,并突出了非共价相互作用在光电子材料中的重要性。