Suppr超能文献

合理的分子与器件设计使有机太阳能电池的效率接近20%。

Rational molecular and device design enables organic solar cells approaching 20% efficiency.

作者信息

Fu Jiehao, Yang Qianguang, Huang Peihao, Chung Sein, Cho Kilwon, Kan Zhipeng, Liu Heng, Lu Xinhui, Lang Yongwen, Lai Hanjian, He Feng, Fong Patrick W K, Lu Shirong, Yang Yang, Xiao Zeyun, Li Gang

机构信息

Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Photonic Research Institute (PRI), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China.

School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, PR China.

出版信息

Nat Commun. 2024 Feb 28;15(1):1830. doi: 10.1038/s41467-024-46022-3.

Abstract

For organic solar cells to be competitive, the light-absorbing molecules should simultaneously satisfy multiple key requirements, including weak-absorption charge transfer state, high dielectric constant, suitable surface energy, proper crystallinity, etc. However, the systematic design rule in molecules to achieve the abovementioned goals is rarely studied. In this work, guided by theoretical calculation, we present a rational design of non-fullerene acceptor o-BTP-eC9, with distinct photoelectric properties compared to benchmark BTP-eC9. o-BTP-eC9 based device has uplifted charge transfer state, therefore significantly reducing the energy loss by 41 meV and showing excellent power conversion efficiency of 18.7%. Moreover, the new guest acceptor o-BTP-eC9 has excellent miscibility, crystallinity, and energy level compatibility with BTP-eC9, which enables an efficiency of 19.9% (19.5% certified) in PM6:BTP-C9:o-BTP-eC9 based ternary system with enhanced operational stability.

摘要

为使有机太阳能电池具有竞争力,吸光分子应同时满足多个关键要求,包括弱吸收电荷转移态、高介电常数、合适的表面能、适当的结晶度等。然而,实现上述目标的分子系统设计规则鲜有研究。在这项工作中,我们以理论计算为指导,合理设计了非富勒烯受体o-BTP-eC9,其光电特性与基准BTP-eC9相比有明显差异。基于o-BTP-eC9的器件具有提升的电荷转移态,因此显著降低了41 meV的能量损失,并展现出18.7%的优异功率转换效率。此外,新型客体受体o-BTP-eC9与BTP-eC9具有优异的混溶性、结晶度和能级兼容性,这使得基于PM6:BTP-C9:o-BTP-eC9的三元体系效率达到19.9%(认证效率为19.5%),且具有增强的运行稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3616/10902355/3bd754ef2afa/41467_2024_46022_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验